Chem Commun (Camb)
October 2024
A Nile red (NR) dye cathode with an asymmetric redox structure of CN and CO bonds was developed for use in an efficient lithium organic battery with a good capacity of 125 mA h g and two visible discharge/charge voltage plateaus (≈2.0 V and ≈1.7 V).
View Article and Find Full Text PDFThe gradual rise of personal healthcare awareness is accelerating the deployment of wearable sensors, whose ability of acquiring physiological vital signs depends on sensing materials. MXenes have distinct chemical and physical superiorities over other 2D nanomaterials for wearable sensors. This review presents a comprehensive summary of the latest advancements in MXenes-based materials for wearable physical sensors.
View Article and Find Full Text PDFWetting behaviors can significantly affect the transport of energy and signal (E&S) through vapor, solid, and liquid interfaces, which has prompted increased interest in interfacial science and technology. E&S transmission can be achieved using electricity, light, and heat, which often accompany and interact with each other. Over the past decade, their distinctive transport phenomena during wetting processes have made significant contributions to various domains.
View Article and Find Full Text PDFThe mechanics of capillary force in biological systems have critical roles in the formation of the intra- and inter-cellular structures, which may mediate the organization, morphogenesis, and homeostasis of biomolecular condensates. Current techniques may not allow direct and precise measurements of the capillary forces at the intra- and inter-cellular scales. By preserving liquid droplets at the liquid-liquid interface, we have discovered and studied ideal models, i.
View Article and Find Full Text PDFStretchable materials are the foundation of dielectric actuators (DEAs) for artificial muscle. However, the inadequate dielectric constant of stretchable materials has always greatly limited the performance of artificial muscle. Recently, soft fillers have been proposed to improve the dielectric property and preserve the stretchability for softness, aiming to avoid the stiffening effect of traditional rigid fillers.
View Article and Find Full Text PDFCotton is one of the oldest and most widely used natural fibers in the world. It enables a wide range of applications due to its excellent moisture absorption, thermal insulation, heat resistance, and durability. Benefiting from current developments in textile technology and materials science, people are constantly seeking more comfortable, more beautiful and more versatile cotton fabrics.
View Article and Find Full Text PDFRobust, hydrophobic woven cotton fabrics were obtained through the sol-gel dip coating of two different nanoparticle (NP) architectures; silica and silica-ZnO. Water repellency values as high as 148° and relatively low tilt angles for fibrous fabrics (12°) were observed, without the need for fluorinated components. In all cases, this enhanced functionality was achieved with the broad retention of water vapor permeability characteristics, , less than 10% decrease.
View Article and Find Full Text PDFWhile polyethylene terephthalate (PET) has enjoyed widespread use, a large volume of plastic waste has also been produced as a result, which is detrimental to the environment. Traditional treatment of plastic waste, such as landfilling and incinerating waste, causes environmental pollution and poses risks to public health. Recycling PET waste into useful chemicals or upcycling the waste into high value-added materials can be remedies.
View Article and Find Full Text PDFA perylene diimide containing side-chain amines (PDIN) was studied as an organic cathode for application in lithium batteries, showing a high capacity of 174 mA h g. The chemical structures, experimental results, and calculation analyses verify that PDIN performed a 4-electron redox reaction jointly involving its CO and side-chain amine groups. This study promotes the development of organic cathodes with multi-electron redox reactions.
View Article and Find Full Text PDFStretchable wearable thermoelectric (TE) generators (WTEGs) without compromising output performance for real wearables have attracted much attention recently. Herein, a 3D thermoelectric generator with biaxial stretchability is constructed on the device level. Ultraflexible inorganic Ag/Ag Se strips are sewn into the soft purl-knit fabric, in which the thermoelectric legs are aligned in the direction of vertical heat flux.
View Article and Find Full Text PDFThe bacterial infection of surgical wounds results in prolonged hospitalization and even death of patients, calling for antibacterial function in modern suture products. To tackle this challenge, cationic guanidine-containing copolymer was synthesized, exhibiting antibacterial potency over 5 log reduction against both Gram-positive S. aureus and Gram-negative E.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) with Lewis acid catalytic sites, such as zirconium-based MOFs (Zr-MOFs), comprise a growing class of phosphatase-like nanozymes that can degrade toxic organophosphate pesticides and nerve agents. Rationally engineering and shaping MOFs from as-synthesized powders into hierarchically porous monoliths is essential for their use in emerging applications, such as filters for air and water purification and personal protection gear. However, several challenges still limit the production of practical MOF composites, including the need for sophisticated reaction conditions, low MOF catalyst loadings in the resulting composites, and poor accessibility to MOF-based active sites.
View Article and Find Full Text PDFWe experimentally demonstrate a dynamic terahertz (THz) chiral device based on a composite structure of anisotropic liquid crystals (LCs) sandwiched between a bilayer metasurface. The device supports the symmetric mode and antisymmetric mode under the incidence of left- and right-circular polarized waves, respectively. The different coupling strengths of the two modes reflect the chirality of the device, and the anisotropy of the LCs can change the coupling strength of the modes, which brings tunability to the chirality of the device.
View Article and Find Full Text PDFJ Colloid Interface Sci
June 2023
In existing separation membranes, it is difficult to quickly produce large-area graphene oxide (GO) nanofiltration membranes with high permeability and high rejection, which is the bottleneck of industrialization. In this study, a pre-crosslinking rod-coating technique is reported. A GO-P-Phenylenediamine (PPD) suspension was obtained by chemically crosslinking GO and PPD for 180 min.
View Article and Find Full Text PDFThe ability of autologous platelet-rich plasma (PRP) gel to promote rapid wound healing without immunological rejection has opened new avenues for the treatment of diabetic foot wounds. However, PRP gel still suffers from the quick release of growth factors (GFs) and requires frequent administration, thus resulting in decreased wound healing efficiency, higher cost as well as greater pain and suffering for the patients. In this study, the flow-assisted dynamic physical cross-linked coaxial microfluidic three-dimensional (3D) bio-printing technology, combined with the calcium ion chemical dual cross-linking method was developed to design PRP-loaded bioactive multi-layer shell-core fibrous hydrogels.
View Article and Find Full Text PDFSpectral reflectance reconstruction for multispectral images (such as Weiner estimation) may perform sub-optimally when the object being measured has a texture that is not in the training set. The accuracy of the reconstruction is significantly lower without training samples. We propose an improved reflectance reconstruction method based on L1-norm penalization to solve this issue.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
February 2023
Taking inspiration from the structures of roots, stems and leaves of trees in nature, a biomimetic three-layered scaffold was designed for efficient water management and cell recruitment. Using polycaprolactone (PCL) and polyacrylonitrile (PAN) as raw materials, radially oriented nanofiber films and multistage adjustable nanofiber films were prepared through electrospinning technology as the base skin-friendly layer (roots) and middle unidirectional moisture conductive material (stems), the porous polyurethane foam was integrated as the outer moisturizing layer (leaves). Among which, radially oriented nanofiber films could promote the directional migration of fibroblasts and induce cell morphological changes.
View Article and Find Full Text PDFSymmetrical azobenzene derivatives with two catechol groups, 1d-4d, were synthesized as kinds of novel compounds, and the structures were confirmed using mass spectrometry and nuclear magnetic resonance spectroscopy. These compounds could attain photostationary state rapidly in solution upon UV irradiation, and their photochromism had good reversibility. Substituents and their positions on azobenzene chromophore had obvious influence on the maximum absorption and photochromic performances of these as-synthesized compounds.
View Article and Find Full Text PDFInspired by the application of dopamine as an "anchor" and UV absorber, novel sustainable colorants with biscatecholic structure were synthesized through a simple incorporation of simple azo chromophores with dopamine. Their structures were confirmed using MS and NMR analyses, and their application on textile materials was investigated. Compared to the simple azo chromophores with almost no coloring ability on fabrics, the biscatecholic colorants could color different fabrics effectively, mainly through self-polymerization only in the presence of a trace amount of organic base at room temperature, which is environmentally friendly in terms of saving resources and alleviating chemical pollution.
View Article and Find Full Text PDFThe healing mechanism of diabetic foot wounds is very complicated, and it is difficult for a single-function medical dressing to achieve good therapeutic effects. We propose a simple coaxial biological 3D printing technology, which uses one-step 3D deposition to continuously produce multifunctional medical dressings on the basis of core-shell hydrogel fibers. These dressings have good biocompatibility, controlled drug-release performance, excellent water absorption and retention, and antibacterial and anti-inflammatory functions.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
June 2022
Nanofibrous dressings exhibit high specific surface areas, good histocompatibility, enhanced wound healing, and reduced inflammation, which have broad technological implications for treating diabetic foot ulcers (DFUs). However, current nanofibrous dressings still suffer from high resistance to cell infiltration and multiple dressing changes. In this study, polycaprolactone (PCL) and collagen were adopted as electrospinning materials to prepare a 3D PCL/Collagen (PC) nanofibrous dressing (3D-PC) using aqueous phase fibre reassembly technology.
View Article and Find Full Text PDFMagnetic polydopamine (PDA) nanocomposites were prepared with a facile and sustainable synthetic method. The as-synthesized polymer-based hybrid composites inherited the intrinsic adhesiveness contributed by catechol and amino moieties of PDA as well as the magnetic property of FeO. With the unique properties of PDA, the surface charges of FeO@PDA could be easily tuned by pH for smart adsorption-desorption behaviors.
View Article and Find Full Text PDFCircadian humidity fluctuation is an important factor that affects human life all over the world. Here we show that spherical cap-shaped ionic liquid drops sitting on nanowire array are able to continuously output electricity when exposed to outdoor air, which we attribute to the daily humidity fluctuation induced directional capillary flow. Specifically, ionic liquid drops could absorb/desorb water around the liquid/vapor interface and swell/shrink depending on air humidity fluctuation.
View Article and Find Full Text PDF