Coherent spin waves possess immense potential in wave-based information computation, storage, and transmission with high fidelity and ultra-low energy consumption. However, despite their seminal importance for magnonic devices, there is a paucity of both structural prototypes and theoretical frameworks that regulate the spin current transmission and magnon hybridization mediated by coherent spin waves. Here, we demonstrate reconfigurable coherent spin current transmission, as well as magnon-magnon coupling, in a hybrid ferrimagnetic heterostructure comprising epitaxial GdFeO and YFeO insulators.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2023
With recent advances in two-dimensional (2D) ferromagnets with enhanced Curie temperatures, it is possible to develop all-2D spintronic devices with high-quality interfaces using 2D ferromagnets. In this study, we have successfully fabricated nonlocal spin valves with FeGeTe (FGT) as the spin source and detector and multilayer graphene as the spin transport channel. The nonlocal spin transport signal was found to strongly depend on temperature and disappear at a temperature below the Curie temperature of the FGT flakes, which stemmed from the temperature-dependent ferromagnetism of FGT.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2023
Two-dimensional (2D) magnetic van der Waals materials provide a powerful platform for studying the fundamental physics of low-dimensional magnetism, engineering novel magnetic phases, and enabling thin and highly tunable spintronic devices. To realize high-quality and practical devices for such applications, there is a critical need for robust 2D magnets with ordering temperatures above room temperature that can be created via exfoliation. Here, the study of exfoliated flakes of cobalt-substituted FeGeTe (CFGT) exhibiting magnetism above room temperature is reported.
View Article and Find Full Text PDFNanowire arrays can be conveniently fabricated by electrodeposition methods using porous anodized alumina oxide templates. They have found applications in numerous fields. Nanotube arrays, with their hollow structure and much enhanced surface-to-volume ratio, as well as an additional tuning parameter in tube wall thickness, promise additional functions compared with nanowire arrays.
View Article and Find Full Text PDFAn ultrafast vector magneto-optical Kerr effect (MOKE) microscope with integrated time-synchronized electrical pulses, two-dimensional magnetic fields, and low-temperature capabilities is reported. The broad range of capabilities of this instrument allows the comprehensive study of spin-orbital interaction-driven magnetization dynamics in a variety of novel magnetic materials or heterostructures: (1) electrical-pump and optical-probe spectroscopy allows the study of current-driven magnetization dynamics in the time domain, (2) two-dimensional magnetic fields along with the vector MOKE microscope allow the thorough study of the spin-orbital-interaction induced magnetization re-orientation in arbitrary directions, and (3) the low-temperature capability allows us to explore novel materials/devices where emergent phenomena appear at low temperature. We discuss the details and challenges of this instrument development and integration and present two datasets that demonstrate and benchmark the capabilities of this instrument: (a) a room-temperature time-domain study of current-induced magnetization dynamics in a ferromagnet/heavy metal bilayer and (b) a low-temperature quasi-static polar MOKE study of the magnetization of a novel compensated ferrimagnet.
View Article and Find Full Text PDFThe spin Hall effect couples charge and spin transport, enabling electrical control of magnetization. A quintessential example of spin-Hall-related transport is the anomalous Hall effect (AHE), first observed in 1880, in which an electric current perpendicular to the magnetization in a magnetic film generates charge accumulation on the surfaces. Here, we report the observation of a counterpart of the AHE that we term the anomalous spin-orbit torque (ASOT), wherein an electric current parallel to the magnetization generates opposite spin-orbit torques on the surfaces of the magnetic film.
View Article and Find Full Text PDFThe correlation between the magnetocaloric effect and magnetotransport property was investigated in NiCoMnCrSn Heusler alloys. The asymmetric isothermal-magnetoresistance around the phase transformation temperature was observed, from which a parameter γ, determined as the ratio of the asymmetric magnetoresistance to the temperature coefficient of resistance, is proposed. According to Maxwell's equation, the parameter γ is analyzed to be equivalent to the transformation temperature change induced by a magnetic field in martensitic transformation.
View Article and Find Full Text PDFFe-Co-Ni gradient-diameter magnetic nanowire arrays were fabricated via direct-current electrodeposition into a tapered anodic aluminium oxide template. In contrast to the magnetic behaviors of uniform-diameter nanowire arrays, these arrays exhibited tailorable magnetic anisotropy that can be used to switch magnetic nanowires easily and unconventional temperature-dependent coercivity with much better thermal stability.
View Article and Find Full Text PDFModification of various properties of graphene oxide (GO) films on SiO/Si substrate under KrF laser radiation was extensively studied. X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and the electrical resistance measurements were employed to correlate the effects of laser irradiation on structural, chemical and electrical properties of GO films under different laser fluences. Raman spectroscopy shows reduced graphene oxide patterns with increased / ratios in irradiated samples.
View Article and Find Full Text PDFGe-based alloys have drawn great interest as promising materials for their superior visible to infrared photoelectric performances. In this study, we report the preparation and optical properties of germanium-bismuth (GeBi) thin films by using molecular beam epitaxy (MBE). GeBi thin films belong to the n-type conductivity semiconductors, which have been rarely reported.
View Article and Find Full Text PDFThe spin-orbit interaction enables interconversion between a charge current and a spin current. It is usually believed that in a nonmagnetic metal (NM) or at a NM/ferromagnetic metal (FM) bilayer interface, the symmetry of spin-orbit effects requires that the spin current, charge current, and spin orientation are all orthogonal to each other. Here we demonstrate the presence of spin-orbit effects near the NM/FM interface that exhibit a very different symmetry, hereafter referred to as spin-rotation symmetry, from the conventional spin Hall effect while the spin polarization is rotating about the magnetization.
View Article and Find Full Text PDFSpin Seebeck effect (SSE) measured for metallic ferromagnetic thin films in commonly used longitudinal configuration contains the contribution from anomalous Nernst effect (ANE). The ANE is considered to arise from the bulk of the ferromagnet (FM) and the proximity-induced FM boundary layer. We fabricate a FM alloy with zero Nernst coefficient to mitigate the ANE contamination of SSE and insert a thin layer of Cu to separate the heavy metal (HM) from the FM to avoid the proximity contribution.
View Article and Find Full Text PDFUsing electrical detection of a strongly coupled spin-photon system comprised of a microwave cavity mode and two magnetic samples, we demonstrate the long distance manipulation of spin currents. This distant control is not limited by the spin diffusion length, instead depending on the interplay between the local and global properties of the coupled system, enabling systematic spin current control over large distance scales (several centimeters in this work). This flexibility opens the door to improved spin current generation and manipulation for cavity spintronic devices.
View Article and Find Full Text PDFGraphene has sparked extensive research interest for its excellent physical properties and its unique potential for application in absorption of electromagnetic waves. However, the processing of stable large-scale graphene and magnetic particles on a micrometer-thick conductive support is a formidable challenge for achieving high reflection loss and impedance matching between the absorber and free space. Herein, a novel and simple approach for the processing of a CNT film-FeO-large scale graphene composite is studied.
View Article and Find Full Text PDFThe design, fabrication and characterization of a novel metamaterial absorber based camera with subwavelength spatial resolution are investigated. The proposed camera is featured with simple and lightweight design, easy portability, low cost, high resolution and sensitivity, and minimal image interference or distortion to the original field distribution. The imaging capability of the proposed camera was characterized in both near field and far field ranges.
View Article and Find Full Text PDFManipulation of magnetization by electric field is a central goal of spintronics because it enables energy-efficient operation of spin-based devices. Spin wave devices are promising candidates for low-power information processing, but a method for energy-efficient excitation of short-wavelength spin waves has been lacking. Here we show that spin waves in nanoscale magnetic tunnel junctions can be generated via parametric resonance induced by electric field.
View Article and Find Full Text PDFA new class of electrochemical electrodes operating in a negative voltage window has been developed by sintering chemically prepared Fe-Ni nanoparticles into a porous nanoscale mixture of an Fe-rich BCC Fe(Ni) phase and a Ni-rich FCC Fe-Ni phase. The selective conversion of the Fe-rich phase to hydroxides provides the electrochemically active component of the electrodes while the Ni-rich phase provides high conductivity and structural stability. The compositionally optimized electrodes exhibit a specific capacitance in excess of 350 F g(-1) (all normalizations are to the total electrode mass rather than the much smaller electrochemically active mass) and retain more than 85% of their maximum specific capacitance after 2000 charging/discharging cycles.
View Article and Find Full Text PDFA robust and efficient non-precious metal catalyst for hydrogen evolution reaction is one of the key components for carbon dioxide-free hydrogen production. Here we report that a hierarchical nanoporous copper-titanium bimetallic electrocatalyst is able to produce hydrogen from water under a mild overpotential at more than twice the rate of state-of-the-art carbon-supported platinum catalyst. Although both copper and titanium are known to be poor hydrogen evolution catalysts, the combination of these two elements creates unique copper-copper-titanium hollow sites, which have a hydrogen-binding energy very similar to that of platinum, resulting in an exceptional hydrogen evolution activity.
View Article and Find Full Text PDFExchange interaction at the interface between magnetic layers exhibits significant contribution to the magnetic resonance frequency. The in situ tuning of the resonance frequency, as large as 10 GHz, is demonstrated in a spintronics microwave device through manipulating the interface exchange interaction.
View Article and Find Full Text PDFOn the heels of metamaterial absorbers (MAs) which produce near perfect electromagnetic (EM) absorption and emission, we propose a universal electromagnetic energy conversion adapter (UEECA) based on MA. By choosing the appropriate energy converting sensors, the UEECA is able to achieve near 100% signal transfer ratio between EM energy and various forms of energy such as thermal, DC electric, or higher harmonic EM energy. The inherited subwavelength dimension and the EM field intensity enhancement can further empower UEECA in many critical applications such as energy harvesting, photoconductive antennas, and nonlinear optics.
View Article and Find Full Text PDFSpin-orbit interaction-driven phenomena such as the spin Hall and Rashba effect in ferromagnetic/heavy metal bilayers enables efficient manipulation of the magnetization via electric current. However, the underlying mechanism for the spin-orbit interaction-driven phenomena remains unsettled. Here we develop a sensitive spin-orbit torque magnetometer based on the magneto-optic Kerr effect that measures the spin-orbit torque vectors for cobalt iron boron/platinum bilayers over a wide thickness range.
View Article and Find Full Text PDFThe spin-orbital interaction in heavy nonmagnetic metal/ferromagnetic metal bilayer systems has attracted great attention and exhibited promising potentials in magnetic logic devices, where the magnetization direction is controlled by passing an electric current. It is found that the spin-orbital interaction induces both an effective field and torque on the magnetization, which have been attributed to two different origins: the Rashba effect and the spin Hall effect. It requires quantitative analysis to distinguish the two mechanisms.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2013
The depletion of traditional energy resources as well as the desire to reduce high CO(2) emissions associated with energy production means that energy storage is now becoming more important than ever. New functional electrode materials are urgently needed for next-generation energy storage systems, such as supercapacitors or batteries, to meet the ever increasing demand for higher energy and power densities. Advances in nanotechnology are essential to meet those future challenges.
View Article and Find Full Text PDFIEEE Trans Nanobioscience
March 2012
Magnetic nanoparticles (MNPs) have been studied widely as a powerful diagnostic probe and therapeutic agent for biomedical applications. In recent years, they are also found to be sensitive to magnetoresistive (MR) devices and MNP-MR biochips are predicted to be more affordable, portable and sensitive than the conventional optical detection methods. In this MNP-MR biochip design, MNP probes are required to have high magnetic moment, high susceptibility, and be target-specific.
View Article and Find Full Text PDF