Publications by authors named "John Wills"

The tumorigenic dose 50 (TD) is a widely used measure of carcinogenic potency which has historically been used to determine acceptable intake limits for carcinogenic compounds. Although broadly used, the TD model was not designed to account for important biological factors such as DNA repair and cell compensatory mechanisms, changes in absorption, etc., leading to the development of benchmark dose (BMD) approaches, which use more flexible dose-response models that are better able to account for these processes.

View Article and Find Full Text PDF

The in vitro Bacterial Reverse Mutation (Ames) Test is crucial for evaluating the mutagenicity of pharmaceutical impurities. For N-nitrosamines (NAs) historical data indicated that for certain members of this chemical class the outcomes of the Ames Test did not correlate with their associated rodent carcinogenicity outcomes. This has resulted in negative outcomes in an OECD aligned Ames Test alone (standard or enhanced) no longer being considered sufficient by regulatory authorities to assess potential carcinogenic risk of NAs if present as impurities in drug products.

View Article and Find Full Text PDF

Genetic toxicity testing assesses the potential of compounds to cause DNA damage. There are many genetic toxicology screening assays designed to assess the DNA damaging potential of chemicals in early drug development aiding the identification of promising drugs that have low-risk potential for causing genetic damage contributing to cancer risk in humans. Despite this, in vitro tests generate a high number of misleading positives, the consequences of which can lead to unnecessary animal testing and/or the abandonment of promising drug candidates.

View Article and Find Full Text PDF

The specific biology of the male breast remains relatively unexplored in spite of the increasing global prevalence of male breast cancer. Delineation of the microenvironment of the male breast is restricted by the low availability of human samples and a lack of characterisation of appropriate animal models. Unlike the mouse, the male ovine gland persists postnatally.

View Article and Find Full Text PDF

Signal transducers and activators of transcription (STAT) proteins regulate mammary development. Here we investigate the expression of phosphorylated STAT3 (pSTAT3) in the mouse and cow around the day of birth. We present localised colocation analysis, applicable to other mammary studies requiring identification of spatially congregated events.

View Article and Find Full Text PDF

The N-nitrosamine, N-nitrosodimethylamine (NDMA), is an environmental mutagen and rodent carcinogen. Small levels of NDMA have been identified as an impurity in some commonly used drugs, resulting in several product recalls. In this study, NDMA was evaluated in an OECD TG-488 compliant Muta™Mouse gene mutation assay (28-day oral dosing across seven daily doses of 0.

View Article and Find Full Text PDF

Background: Lung damage in severe COVID-19 is highly heterogeneous however studies with dedicated spatial distinction of discrete temporal phases of diffuse alveolar damage (DAD) and alternate lung injury patterns are lacking. Existing studies have also not accounted for progressive airspace obliteration in cellularity estimates. We used an imaging mass cytometry (IMC) analysis with an airspace correction step to more accurately identify the cellular immune response that underpins the heterogeneity of severe COVID-19 lung disease.

View Article and Find Full Text PDF
Article Synopsis
  • Quantitative risk assessments for chemicals typically rely on animal testing, but there is increasing interest in effective non-animal alternatives that can provide human-relevant data.
  • There is a pressing need for standardization in in vitro testing methods and data interpretation to facilitate this transition away from animal testing.
  • An Expert Working Group found that while in vitro genotoxicity data can be useful in risk assessments, more research is needed to address uncertainties before they can be fully integrated into regulatory practices.
View Article and Find Full Text PDF

The robust control of genotoxic N-nitrosamine (NA) impurities is an important safety consideration for the pharmaceutical industry, especially considering recent drug product withdrawals. NAs belong to the 'cohort of concern' list of genotoxic impurities (ICH M7) because of the mutagenic and carcinogenic potency of this chemical class. In addition, regulatory concerns exist regarding the capacity of the Ames test to predict the carcinogenic potential of NAs because of historically discordant results.

View Article and Find Full Text PDF
Article Synopsis
  • The study addresses challenges in analyzing imaging mass cytometry (IMC) data, particularly issues with accurate single-cell segmentation and visualization, which can lead to misidentification of cell types and states.
  • Researchers developed the OPTIMAL framework to systematically evaluate various methods for cell segmentation, data transformation, and clustering on a human tonsil tissue sample stained with 27 antibodies over multiple batches.
  • Key findings include improved single-cell segmentation using a probability map, optimal data transformation with an arcsinh cofactor of 1, and the effectiveness of the PacMap dimensionality reduction technique combined with FLOWSOM clustering for better cell type identification.
View Article and Find Full Text PDF

Unlocking and quantifying fundamental biological processes through tissue microscopy requires accurate, segmentation of all cells imaged. Currently, achieving this is complex and requires exogenous fluorescent labels that occupy significant spectral bandwidth, increasing the duration and complexity of imaging experiments while limiting the number of channels remaining to address the study's objectives. We demonstrate that the excitation light reflected during routine confocal microscopy contains sufficient information to achieve accurate, label-free cell segmentation in 2D and 3D.

View Article and Find Full Text PDF

Automated microscopy and computational image analysis has transformed cell biology, providing quantitative, spatially resolved information on cells and their constituent molecules from the sub-micron to the whole-organ scale. Here we explore the application of spatial statistics to the cellular relationships within tissue microscopy data and discuss how spatial statistics offers cytometry a powerful yet underused mathematical tool set for which the required data are readily captured using standard protocols and microscopy equipment. We also highlight the often-overlooked need to carefully consider the structural heterogeneity of tissues in terms of the applicability of different statistical measures and their accuracy and demonstrate how spatial analyses offer a great deal more than just basic quantification of biological variance.

View Article and Find Full Text PDF

Risk assessments are increasingly reliant on information from in vitro assays. The in vitro micronucleus test (MNvit) is a genotoxicity test that detects chromosomal abnormalities, including chromosome breakage (clastogenicity) and/or whole chromosome loss (aneugenicity). In this study, MNvit datasets for 292 chemicals, generated by the US EPA's ToxCast program, were evaluated using a decision tree-based pipeline for hazard identification.

View Article and Find Full Text PDF

The 380-to-393-amino-acid glycoprotein I (gI) encoded by herpes simplex virus 1 (HSV-1) is a critical mediator for viral cell-to-cell spread and syncytium formation. Here we report a previously unrecognized aberrant form of gI in HSV-1-infected cells. Production of this molecule is independent of cell type and viral strains.

View Article and Find Full Text PDF

The human breast and ovine mammary gland undergo striking levels of postnatal development, leading to formation of terminal duct lobular units (TDLUs). Here we interrogate aspects of sheep TDLU growth as a model of breast development and to increase understanding of ovine mammogenesis. The distributions of epithelial nuclear Ki67 positivity differ significantly between younger and older lambs.

View Article and Find Full Text PDF

Metal-organic framework nanoparticles (nanoMOFs) have been widely studied in biomedical applications. Although substantial efforts have been devoted to the development of biocompatible approaches, the requirement of tedious synthetic steps, toxic reagents, and limitations on the shelf life of nanoparticles in solution are still significant barriers to their translation to clinical use. In this work, we propose a new postsynthetic modification of nanoMOFs with phosphate-functionalized methoxy polyethylene glycol (mPEG-PO) groups which, when combined with lyophilization, leads to the formation of redispersible solid materials.

View Article and Find Full Text PDF

We present a general method of constructing pseodopotentials from first-principles, all-electron, and full-potential electronic structure calculations of a solid. The method is applied to bcc Na, at low-temperature equilibrium volume. The essential steps of the method involve (i) calculating an all-electron Kohn-Sham eigenstate, (ii) replacing the oscillating part of the wave function (inside the muffin-tin spheres) of this state, with a smooth function, (iii) representing the smooth wave function in a Fourier series, and (iv) inverting the Kohn-Sham equation, to extract the pseudopotential that produces the state generated in steps i-iii.

View Article and Find Full Text PDF

The in vitro micronucleus assay is a globally significant method for DNA damage quantification used for regulatory compound safety testing in addition to inter-individual monitoring of environmental, lifestyle and occupational factors. However, it relies on time-consuming and user-subjective manual scoring. Here we show that imaging flow cytometry and deep learning image classification represents a capable platform for automated, inter-laboratory operation.

View Article and Find Full Text PDF

Genetic toxicology is an essential component of compound safety assessment. In the face of a barrage of new compounds, higher throughput, less ethically divisive in vitro approaches capable of effective, human-relevant hazard identification and prioritisation are increasingly important. One such approach is the ToxTracker assay, which utilises murine stem cell lines equipped with green fluorescent protein (GFP)-reporter gene constructs that each inform on distinct aspects of cellular perturbation.

View Article and Find Full Text PDF

The envelope glycoprotein I (gI) of herpes simplex virus 1 (HSV-1) is a critical mediator of virus-induced cell-to-cell spread and cell-cell fusion. Here, we report a previously unrecognized property of this molecule. In transfected cells, the HSV-1 gI was discovered to induce rod-shaped structures that were uniform in width but variable in length.

View Article and Find Full Text PDF

Daily oral exposure to vast numbers (>10/adult/day) of micron or nano-sized persistent particles has become the norm for many populations. Significant airborne particle exposure is deleterious, so what about ingestion? Titanium dioxide in food grade form (fgTiO) , which is an additive to some foods, capsules, tablets and toothpaste, may provide clues. Certainly, exposed human populations accumulate these particles in specialised intestinal cells at the base of large lymphoid follicles (Peyer's patches) and it's likely that a degree of absorption goes beyond this- i.

View Article and Find Full Text PDF

Immunofluorescence microscopy is an essential tool for tissue-based research, yet data reporting is almost always qualitative. Quantification of images, at the per-cell level, enables "flow cytometry-type" analyses with intact locational data but achieving this is complex. Gastrointestinal tissue, for example, is highly diverse: from mixed-cell epithelial layers through to discrete lymphoid patches.

View Article and Find Full Text PDF

Human exposure to persistent, nonbiological nanoparticles and microparticles via the oral route is continuous and large scale (10 -10 particles per day per adult in Europe). Whether this matters or not is unknown but confirmed health risks with airborne particle exposure warns against complacency. Murine models of oral exposure will help to identify risk but, to date, lack validation or relevance to humans.

View Article and Find Full Text PDF

Background: The multifaceted interactions between gastrointestinal (GI) helminth parasites, host gut microbiota and immune system are emerging as a key area of research within the field of host-parasite relationships. In spite of the plethora of data available on the impact that GI helminths exert on the composition of the gut microflora, whether alterations of microbial profiles are caused by direct parasite-bacteria interactions or, indirectly, by alterations of the GI environment (e.g.

View Article and Find Full Text PDF

Understanding nanoparticle uptake by biological cells is fundamentally important to wide-ranging fields from nanotoxicology to drug delivery. It is now accepted that the arrival of nanoparticles at the cell is an extremely complicated process, shaped by many factors including unique nanoparticle physico-chemical characteristics, protein-particle interactions and subsequent agglomeration, diffusion and sedimentation. Sequentially, the nanoparticle internalisation process itself is also complex, and controlled by multiple aspects of a cell's state.

View Article and Find Full Text PDF