Background: Frequently utilized Alzheimer’s disease (AD) preclinical models rely on risk factors expressed in familial AD, which accounts for <1% of the clinical AD population. Apolipoprotein (APOE) ε4 is the strongest genetic risk factor for the development of the more prevalent late‐onset Alzheimer’s disease (LOAD). MRI studies demonstrate a link between APOE‐ε4 and reduced gray matter volume as well as lower fractional anisotropy (FA) in AD patients.
View Article and Find Full Text PDFThe endosomal sorting complexes required for transport (ESCRT) pathway is composed of a series of protein complexes that are essential for sorting cargo through the endosome. In neurons, the ESCRT pathway is a key mediator of many cellular pathways that regulate neuronal morphogenesis as well as synaptic growth and function. The ESCRT-0 complex, consisting of HGS (hepatocyte growth factor-regulated tyrosine kinase substrate) and STAM (signal-transducing adaptor molecule), acts as a gate keeper to this pathway, ultimately determining the fate of the endosomal cargo.
View Article and Find Full Text PDFAge, genetics, and chromosomal sex have been identified as critical risk factors for late-onset Alzheimer's disease (LOAD). The predominant genetic risk factor for LOAD is the apolipoprotein E allele (), and the prevalence of LOAD is higher in females. However, the translational validity of mouse models for AD-related cognitive impairment remains to be fully determined.
View Article and Find Full Text PDFEndosomal sorting plays a fundamental role in directing neural development. By altering the temporal and spatial distribution of membrane receptors, endosomes regulate signaling pathways that control the differentiation and function of neural cells. Several genes linked to inherited demyelinating peripheral neuropathies, known as Charcot-Marie-Tooth (CMT) disease, encode proteins that directly interact with components of the endosomal sorting complex required for transport (ESCRT).
View Article and Find Full Text PDFStrategies for enhancing protein degradation have been proposed for treating neurological diseases associated with a decline in proteasome activity. A proteasomal deubiquitinating enzyme that controls substrate entry into proteasomes, ubiquitin-specific protease 14 (USP14), is an attractive candidate for therapies that modulate proteasome activity. This report tests the validity of genetic and pharmacological tools to study USP14's role in regulating protein abundance.
View Article and Find Full Text PDFUbiquitin is an essential signaling protein that controls many different cellular processes. While cellular ubiquitin levels normally cycle between pools of free and conjugated ubiquitin, the balance of these ubiquitin pools can be shifted by exposure to a variety of cellular stresses. Altered ubiquitin pools are also observed in several neurological disorders, suggesting that imbalances in ubiquitin homeostasis may contribute to neuronal dysfunction.
View Article and Find Full Text PDFNeuronal inclusions composed of α-synuclein (α-syn) characterize Parkinson's Disease (PD) and Dementia with Lewy bodies (DLB). Cognitive dysfunction defines DLB, and up to 80% of PD patients develop dementia. α-Syn inclusions are abundant in the hippocampus, yet functional consequences are unclear.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
November 2003
Profiling gene expression in endothelial cells advances the understanding of normal vascular physiology and disease processes involving angiogenesis. However, endothelial cell purification has been challenging because of the difficulty of isolating cells and their low abundance. Here we examine gene expression in endothelial cells freshly isolated from lung capillaries after in vivo labeling with fluorescent cationic liposomes and purification by fluorescence-activated cell sorting (FACS).
View Article and Find Full Text PDF