Publications by authors named "John W Leffler"

A twelve-week feeding trial was conducted to examine potential metabolic and gene expression changes that occur in juvenile red drum, Sciaenops ocellatus, fed diets with increasing soybean meal inclusion. Significant reduction in fish performance characteristics (feed consumption, weight gain, final weight) was observed within the soybean meal based diets as soybean meal level increased (R, linear regression); however, all soybean meal based diets performed statistically equivalent in regards to performance characteristics (weight gain, feed conversion ratio, condition factor, etc.) to a commercial (45% crude protein and 16% crude lipid) reference diet (R, ANOVA).

View Article and Find Full Text PDF

We investigated changes in the metabolome in juvenile red drum (Sciaenops ocellatus) induced by increasing amounts of soybean meal (0% to 60%) in extruded, fishmeal-free diets using a nuclear magnetic resonance spectroscopy (NMR)-based metabolomics approach in a 12-week feeding trial. All of the diets were composed of ≈40% total crude protein, ≈11% total crude lipid and were energetically balanced. A fishmeal-containing, commercial extruded diet was used as a control diet throughout the trial.

View Article and Find Full Text PDF

We investigated the metabolic effects of four different commercial soy-based protein products on red drum fish (Sciaenops ocellatus) using nuclear magnetic resonance (NMR) spectroscopy-based metabolomics along with unsupervised principal component analysis (PCA) to evaluate metabolic profiles in liver, muscle, and plasma tissues. Specifically, during a 12 week feeding trial, juvenile red drum maintained in an indoor recirculating aquaculture system were fed four different commercially available soy formulations, containing the same amount of crude protein, and two reference diets as performance controls: a 60% soybean meal diet that had been used in a previous trial in our lab and a natural diet. Red drum liver, muscle, and plasma tissues were sampled at multiple time points to provide a more accurate snapshot of specific metabolic states during the grow-out.

View Article and Find Full Text PDF

Success of the shrimp aquaculture industry requires technological advances that increase production and environmental sustainability. Indoor, superintensive, aquaculture systems are being developed that permit year-round production of farmed shrimp at high densities. These systems are intended to overcome problems of disease susceptibility and of water quality issues from waste products, by operating as essentially closed systems that promote beneficial microbial communities (biofloc).

View Article and Find Full Text PDF