A light-mediated methodology to grow patterned, emissive polymer brushes with micron feature resolution is reported and applied to organic light emitting diode (OLED) displays. Light is used for both initiator functionalization of indium tin oxide and subsequent atom transfer radical polymerization of methacrylate-based fluorescent and phosphorescent iridium monomers. The iridium centers play key roles in photocatalyzing and mediating polymer growth while also emitting light in the final OLED structure.
View Article and Find Full Text PDFDespite the number of methods available for dehalogenation and carbon-carbon bond formation using aryl halides, strategies that provide chemoselectivity for systems bearing multiple carbon-halogen bonds are still needed. Herein, we report the ability to tune the reduction potential of metal-free phenothiazine-based photoredox catalysts and demonstrate the application of these catalysts for chemoselective carbon-halogen bond activation to achieve C-C cross-coupling reactions as well as reductive dehalogenations. This procedure works both for conjugated polyhalides as well as unconjugated substrates.
View Article and Find Full Text PDFOvercoming the challenge of metal contamination in traditional ATRP systems, a metal-free ATRP process, mediated by light and catalyzed by an organic-based photoredox catalyst, is reported. Polymerization of vinyl monomers are efficiently activated and deactivated with light leading to excellent control over the molecular weight, polydispersity, and chain ends of the resulting polymers. Significantly, block copolymer formation was facile and could be combined with other controlled radical processes leading to structural and synthetic versatility.
View Article and Find Full Text PDFThe controlled radical polymerization of a variety of acrylate monomers is reported using an Ir-catalyzed visible light mediated process leading to well-defined homo-, random, and block copolymers. The polymerizations could be efficiently activated and deactivated using light while maintaining a linear increase in molecular weight with conversion and first order kinetics. The robust nature of the -[Ir(ppy)] catalyst allows carboxylic acids to be directly introduced at the chain ends through functional initiators or along the backbone of random copolymers (controlled process up to 50 mol % acrylic acid incorporation).
View Article and Find Full Text PDFA modular and general method based on a photomediated ATRA reaction for the spatially controlled functionalization of surfaces with visible light is reported. The ability to control reactivity with light intensity combined with the orthogonality of ATRA chemistry allows well-defined chemically differentiated monolayers and complex nonlinear chemical concentration gradients to be easily prepared. Use of light to mediate these reactions permits spatial regulation and the generation of unique, multifunctional chemical gradients.
View Article and Find Full Text PDFCycles of depalmitoylation and repalmitoylation critically control the steady-state localization and function of various peripheral membrane proteins, such as Ras proto-oncogene products. Interference with acylation using small molecules is a strategy to modulate cellular localization--and thereby unregulated signaling--caused by palmitoylated Ras proteins. We present the knowledge-based development and characterization of a potent inhibitor of acyl protein thioesterase 1 (APT1), a bona fide depalmitoylating enzyme that is, so far, poorly characterized in cells.
View Article and Find Full Text PDFThe ring-opening polymerization of a mixture of enantiomerically pure but different monomers using an yttrium complex as initiator proceeds readily at room temperature to give the corresponding highly alternating polyester.
View Article and Find Full Text PDF4-Substituted oxazolines, which are readily synthesized from naturally occurring alpha-amino acids, are converted efficiently and stereospecifically to beta-amidoaldehydes in the presence of synthesis gas and catalytic dicobalt octacarbonyl.
View Article and Find Full Text PDFEfficient and mild reaction conditions were developed for the catalytic carbonylation of fluorinated epoxides to their corresponding β-lactones. Six new lactones with fluorinated side chains were prepared in high isolated yields. These lactones were polymerized to form a series of new poly(β-hydroxyalkanoate)s with fluorinated side chains, and their properties were examined with respect to their hydrocarbon analogs.
View Article and Find Full Text PDFSubstituted 3-hydroxy-delta-lactones (3HLs) are valuable intermediates in the synthesis of pharmaceuticals and other biologically active natural products. Herein we report the first example of the catalytic carbonylation of substituted homoglycidols to 3HLs using HCo(CO)4. Upon optimization of the catalyst and reaction conditions, a functionally diverse set of 3HLs was prepared.
View Article and Find Full Text PDF[reaction: see text] A readily prepared bimetallic catalyst is capable of effecting epoxide carbonylation to produce beta-lactones at substantially lower CO pressures than previously reported catalyst systems. A functionally diverse array of beta-lactones is produced in excellent yields at CO pressures as low as 1 atm. This procedure allows for epoxide carbonylation on a multigram scale without the requirement of specialized, high-pressure equipment.
View Article and Find Full Text PDFVet Clin Pathol
January 1996
Canine serum was used to compare seven chemistry analytes on two tabletop clinical dry chemistry analyzers, Boehringer's Reflotron and Kodak's Ektachem. Results were compared to those obtained on a wet chemistry reference analyzer, Roche Diagnostic's Cobas Mira. Analytes measured were urea nitrogen (BUN), creatinine, glucose, aspartate aminotransferase (AST), alanine aminotransferase (ALT), cholesterol and bilirubin.
View Article and Find Full Text PDF