The translation elongation factor eIF5A is conserved through evolution and is necessary to rescue the ribosome during translation elongation of polyproline-containing proteins. Although the site of eIF5A binding to the ribosome is known, no systematic analysis has been performed so far to determine the important residues on the surface of eIF5A required for ribosome binding. In this study, we used clustered charged-to-alanine mutagenesis and structural modeling to address this question.
View Article and Find Full Text PDFeIF5A is the only protein known to contain the essential and unique amino acid residue hypusine. eIF5A functions in both translation initiation due to its stimulation of methionyl-puromycin synthesis and translation elongation, being highly required for peptide-bound formation of specific ribosome stalling sequences such as poly-proline. The functional interaction between eIF5A, tRNA, and eEF2 on the surface of the ribosome is further clarified herein.
View Article and Find Full Text PDFThe eukaryotic initiation factor eIF5A is a translation factor that, unusually, has been assigned functions in both initiation and elongation. Additionally, it is implicated in transcription, mRNA turnover and nucleocytoplasmic transport. Two eIF5A isoforms are generated from distinct but related genes.
View Article and Find Full Text PDFSpecific individual subunits of eIF3 are elevated or reduced in numerous human tumors, and their ectopic overexpression in immortal cells can result in malignant transformation. The structure and assembly of eIF3 and its role in promoting mRNA and methionyl-tRNAi binding to the ribosome during the initiation phase of protein synthesis are described. Methods employed to detect altered levels of eIF3 subunits in cancers are critically evaluated in order to conclude rigorously that such subunits may cause malignant transformation.
View Article and Find Full Text PDFeIF3 (eukaryotic initiation factor 3) is the largest and most complex eukaryotic mRNA translation factor in terms of the number of protein components or subunits. In mammals, eIF3 is composed of 13 different polypeptide subunits, of which five, i.e.
View Article and Find Full Text PDFRecruitment of mRNA to the 40S ribosomal subunit requires the coordinated interaction of a large number of translation initiation factors. In mammals, the direct interaction between eukaryotic initiation factor 4G (eIF4G) and eIF3 is thought to act as the molecular bridge between the mRNA cap-binding complex and the 40S subunit. A discrete ∼90 amino acid domain in eIF4G is responsible for binding to eIF3, but the identity of the eIF3 subunit(s) involved is less clear.
View Article and Find Full Text PDFWe introduce here the inaugural issue of the new scientific journal Translation. The overarching aim of this endeavor is to establish a new forum for a broad spectrum of research in the area of protein synthesis in living systems ranging from structural biochemical, evolutionary and regulatory aspects of translation to the fundamental questions related to post-translational control of somatic phenomena in multicellular organisms including human behavior and health. The journal will publish high quality research articles, provide novel insights, ask provocative questions and discuss new hypothesis in this emerging field.
View Article and Find Full Text PDFTranslational control plays an essential role in the regulation of gene expression. It is especially important in defining the proteome, maintaining homeostasis, and controlling cell proliferation, growth, and development. Numerous disease states result from aberrant regulation of protein synthesis, so understanding the molecular basis and mechanisms of translational control is critical.
View Article and Find Full Text PDFThe delivery of Met-tRNA(i) to the 40S ribosomal subunit is thought to occur by way of a ternary complex (TC) comprising eIF2, GTP and Met-tRNA(i). We have generated from purified human proteins a stable multifactor complex (MFC) comprising eIF1, eIF2, eIF3 and eIF5, similar to the MFC reported in yeast and plants. A human MFC free of the ribosome also is detected in HeLa cells and rabbit reticulocytes, indicating that it exists in vivo.
View Article and Find Full Text PDFEukaryotic translation requires a suite of proteins known as eukaryotic initiation factors (eIFs). These molecular effectors oversee the highly regulated initiation phase of translation. Essential to eukaryotic translation initiation is the protein eIF2, a heterotrimeric protein composed of the individually distinct subunits eIF2α, eIF2β, and eIF2γ.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2011
Within the field of eukaryotic protein synthesis, one factor remained putative for decades: eukaryotic translation initiation factor (eIF) 5A. Because eIF5A is an essential protein required for cell proliferation, and one easily targeted by inhibitors, identifying its role in the cell remains important and urgent. Recent reports support early findings that eIF5A stimulates protein synthesis and newly assign the factor a role in elongation rather than initiation.
View Article and Find Full Text PDFThe fragile X mental retardation 1 (FMR1) gene contains a CGG repeat within its 5' untranslated region (5'UTR) that, when expanded to 55-200 CGG repeats (premutation allele), can result in the late-onset neurodegenerative disorder, fragile X-associated tremor/ataxia syndrome. The CGG repeat is expected to form a highly stable secondary structure that is capable of inhibiting 5'-cap-dependent translation. Paradoxically, translation in vivo is only mildly impaired within the premutation range, suggesting that other modes of translation initiation may be operating.
View Article and Find Full Text PDFMaintenance of cell homeostasis and regulation of cell proliferation depend importantly on regulating the process of protein synthesis. Many disease states arise when disregulation of protein synthesis occurs. This review focuses on mechanisms of translational control and how disregulation results in cell malignancy.
View Article and Find Full Text PDFThe fragile X mental retardation 1 (FMR1) gene contains a CGG-repeat element within its 5' untranslated region (5'UTR) which, for alleles with more than approximately 40 repeats, increasingly affects both transcription (up-regulation) and translation (inhibition) of the repeat-containing RNA with increasing CGG-repeat length. Translational inhibition is thought to be due to impaired ribosomal scanning through the CGG-repeat region, which is postulated to form highly stable secondary/tertiary structure. One striking difference between alleles in the premutation range (55-200 CGG repeats) and those in the normal range (< approximately 40 repeats) is the reduced number/absence of 'expansion stabilizing' AGG interruptions in the larger alleles.
View Article and Find Full Text PDFThe methodology developed in the research presented herein makes use of chaotropic solvents to gently dissociate subunits from an intact macromolecular complex and subsequently allows for the measurement of collision cross section (CCS) for both the recombinant (R-eIF3k) and solvent dissociated form of the subunit (S-eIF3k). In this particular case, the k subunit from the eukaryotic initiation factor 3 (eIF3) was investigated in detail. Experimental and theoretical CCS values show both the recombinant and solvent disrupted forms of the protein to be essentially the same.
View Article and Find Full Text PDFNat Struct Mol Biol
April 2009
Eukaryotic protein synthesis begins with mRNA positioning in the ribosomal decoding channel in a process typically controlled by translation-initiation factors. Some viruses use an internal ribosome entry site (IRES) in their mRNA to harness ribosomes independently of initiation factors. We show here that a ribosome conformational change that is induced upon hepatitis C viral IRES binding is necessary but not sufficient for correct mRNA positioning.
View Article and Find Full Text PDFeIF3f is a subunit of eukaryotic initiation factor 3 (eIF3). We previously showed that eIF3f is phosphorylated by cyclin dependent kinase 11 (CDK11(p46)) which is an important effector in apoptosis. Here, we identified a second eIF3f phosphorylation site (Thr119) by CDK11(p46) during apoptosis.
View Article and Find Full Text PDFDysregulation of protein synthesis has been implicated in oncogenesis through a mechanism whereby "weak" mRNAs encoding proteins involved in cell proliferation are strongly translated when the protein synthesis apparatus is activated. Previous work has determined that many cancer cells contain high levels of eIF3h, a protein subunit of translation initiation factor eIF3, and overexpression of eIF3h malignantly transforms immortal NIH-3T3 cells. This is a general feature of eIF3h, as high levels also affect translation, proliferation, and a number of malignant phenotypes of CHO-K1 and HeLa cells and, most significantly, of a primary prostate cell line.
View Article and Find Full Text PDFIn mammalian cells, nonsense-mediated mRNA decay (NMD) generally requires that translation terminates sufficiently upstream of a post-splicing exon junction complex (EJC) during a pioneer round of translation. The subsequent binding of Upf1 to the EJC triggers Upf1 phosphorylation. We provide evidence that phospho-Upf1 functions after nonsense codon recognition during steps that involve the translation initiation factor eIF3 and mRNA decay factors.
View Article and Find Full Text PDFThe eukaryotic translation initiation factor 5A (eIF5A) is the only protein that contains hypusine [Nepsilon-(4-amino-2-hydroxybutyl)lysine], which is required for its activity. Hypusine is formed by post-translational modification of one specific lysine (Lys50 for human eIF5A) by deoxyhypusine synthase and deoxyhypusine hydroxylase. To investigate the features of eIF5A required for its activity, we generated 49 mutations in human eIF5A-1, with a single amino acid substitution at the highly conserved residues or with N-terminal or C-terminal truncations, and tested mutant proteins in complementing the growth of a Saccharomyces cerevisiae eIF5A null strain.
View Article and Find Full Text PDFProtein synthesis in all cells begins with the ordered binding of the small ribosomal subunit to messenger RNA (mRNA) and transfer RNA (tRNA). In eukaryotes, translation initiation factor 3 (eIF3) is thought to play an essential role in this process by influencing mRNA and tRNA binding through indirect interactions on the backside of the 40S subunit. Here we show by directed hydroxyl radical probing that the human eIF3 subunit eIF3j binds to the aminoacyl (A) site and mRNA entry channel of the 40S subunit, placing eIF3j directly in the ribosomal decoding center.
View Article and Find Full Text PDF