The two most abundant minerals in the Earth's lower mantle are bridgmanite and ferropericlase. The bulk modulus of ferropericlase (Fp) softens as iron d-electrons transition from a high-spin to low-spin state, affecting the seismic compressional velocity but not the shear velocity. Here, we identify a seismological expression of the iron spin crossover in fast regions associated with cold Fp-rich subducted oceanic lithosphere: the relative abundance of fast velocities in P- and S-wave tomography models diverges in the ~1,400-2,000 km depth range.
View Article and Find Full Text PDFThe thermal structure of the Earth's lowermost mantle--the D'' layer spanning depths of approximately 2,600-2,900 kilometres--is key to understanding the dynamical state and history of our planet. Earth's temperature profile (the geotherm) is mostly constrained by phase transitions, such as freezing at the inner-core boundary or changes in crystal structure within the solid mantle, that are detected as discontinuities in seismic wave speed and for which the pressure and temperature conditions can be constrained by experiment and theory. A recently discovered phase transition at pressures of the D'' layer is ideally situated to reveal the thermal structure of the lowermost mantle, where no phase transitions were previously known to exist.
View Article and Find Full Text PDF