Publications by authors named "John W Fathman"

Inflammatory bowel disease (IBD) consists of chronic conditions that severely impact a patient's health and quality of life. Interleukin-10 (IL-10), a potent anti-inflammatory cytokine has strong genetic links to IBD susceptibility and has shown strong efficacy in IBD rodent models, suggesting it has great therapeutic potential. However, when tested in clinical trials for IBD, recombinant human IL-10 (rhIL-10) showed weak and inconsistent efficacy due to its short half-life and pro-inflammatory properties that counteract the anti-inflammatory efficacy.

View Article and Find Full Text PDF

Single-cell imaging-based assays are an area of active and growing investment in drug discovery and development. This approach offers researchers the capability to interrogate rare subpopulations of cells with minimal sample consumption and multiplexed readouts. Recent technological advances in the optical interrogation and manipulation of single cells have substantially increased the throughput and sensitivity of these assays.

View Article and Find Full Text PDF

The goal of high-throughput screening is to enable screening of compound libraries in an automated manner to identify quality starting points for optimization. This often involves screening a large diversity of compounds in an assay that preserves a connection to the disease pathology. Phenotypic screening is a powerful tool for drug identification, in that assays can be run without prior understanding of the target and with primary cells that closely mimic the therapeutic setting.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) are the self-renewing multipotent progenitors to all blood cell types. Identification and isolation of HSCs for study has depended on the expression of combinations of surface markers on HSCs that reliably distinguish them from other cell types. However, the increasing number of markers required to isolate HSCs has made it tedious, expensive, and difficult for newcomers, suggesting the need for a simpler panel of HSC markers.

View Article and Find Full Text PDF

Small numbers of hematopoietic stem cells (HSCs) generate large numbers of mature effector cells through the successive amplification of transiently proliferating progenitor cells. HSCs and their downstream progenitors have been extensively characterized based on their cell-surface phenotype and functional activities during transplantation assays. These cells dynamically lose and acquire specific sets of surface markers during differentiation, leading to the identification of markers that allow for more refined separation of HSCs from early hematopoietic progenitors.

View Article and Find Full Text PDF

Hematopoiesis in the embryo proceeds in a series of waves, with primitive erythroid-biased waves succeeded by definitive waves, within which the properties of hematopoietic stem cells (multilineage potential, self-renewal, and engraftability) gradually arise. Whereas self-renewal and engraftability have previously been examined in the embryo, multipotency has not been thoroughly addressed, especially at the single-cell level or within well-defined populations. To identify when and where clonal multilineage potential arises during embryogenesis, we developed a single-cell multipotency assay.

View Article and Find Full Text PDF

Mobilization of the T-cell response against cancer has the potential to achieve long-lasting cures. However, it is not known how to harness antigen-presenting cells optimally to achieve an effective antitumor T-cell response. In this study, we show that anti-CD47 antibody-mediated phagocytosis of cancer by macrophages can initiate an antitumor T-cell immune response.

View Article and Find Full Text PDF

Gene expression profiling using microarrays has been limited to comparisons of gene expression between small numbers of samples within individual experiments. However, the unknown and variable sensitivities of each probeset have rendered the absolute expression of any given gene nearly impossible to estimate. We have overcome this limitation by using a very large number (>10,000) of varied microarray data as a common reference, so that statistical attributes of each probeset, such as the dynamic range and threshold between low and high expression, can be reliably discovered through meta-analysis.

View Article and Find Full Text PDF

Natural killer (NK) cells develop in the bone marrow and are known to gradually acquire the ability to eliminate infected and malignant cells, yet the cellular stages of NK lineage commitment and maturation are incompletely understood. Using 12-color flow cytometry, we identified a novel NK-committed progenitor (pre-NKP) that is a developmental intermediate between the upstream common lymphoid progenitor and the downstream NKP, previously assumed to represent the first stage of NK lineage commitment. Our analysis also refined the purity of NKPs (rNKP) by 6-fold such that 50% of both pre-NKP and rNKP cells gave rise to NKp46+ NK cells at the single-cell level.

View Article and Find Full Text PDF

Nuclear factor of activated T cell (NFAT) transcription factors are key regulators of gene transcription within immune cells. The NFAT-interacting protein, (NIP45), augments NFAT-driven IL-4 expression by a mechanism that relies on arginine methylation. To establish the function of NIP45 in vivo, we generated mice with a targeted deletion of the gene encoding this cofactor.

View Article and Find Full Text PDF

Tissue remodeling with fibrosis is a predominant pathophysiological mechanism of many human diseases. Systemic sclerosis is a rare, often lethal, disorder of unknown etiology manifested by dermal fibrosis (scleroderma) and excessive connective tissue deposition in internal organs. Currently, there are no available antifibrotic therapeutics, a reflection of our lack of understanding of this process.

View Article and Find Full Text PDF

The transcription factor T-bet (Tbx21) plays a major role in adaptive immunity and is required for optimal IFN-gamma production by DCs. Here we demonstrate an essential function for T-bet in DCs in controlling inflammatory arthritis. We show that collagen antibody-induced arthritis (CAIA), a model of human RA, is a bipartite disease characterized by an early innate immune system component intact in RAG2 mice and a later adaptive immune system phase.

View Article and Find Full Text PDF

Posttranslational modification of proteins within T cell receptor signaling cascades allows T lymphocytes to rapidly initiate an appropriate immune response. Here we report a role for arginine methylation in regulating cytokine gene transcription in the T helper lymphocyte. Inhibition of arginine methylation impaired the expression of several cytokine genes, including the signature type 1 and type 2 helper cytokines, interferon gamma, and interleukin-4.

View Article and Find Full Text PDF