Acidic mammalian chitinase (AMCase) is a member of the glycosyl hydrolase 18 family (EC 3.2.1.
View Article and Find Full Text PDFUsing a focused screen of biogenic amine compounds we identified a novel series of H(3)R antagonists. A preliminary SAR study led to reduction of MW while increasing binding affinity and potency. Optimization of the physical properties of the series led to (S)-6n, with improved brain to plasma exposure and efficacy in both water intake and novel object recognition models.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2010
C5a is a terminal product of the complement cascade that activates and attracts inflammatory cells including granulocytes, mast cells and macrophages via a specific GPCR, the C5a receptor (C5aR). Inhibition of C5a/C5aR interaction has been shown to be efficacious in several animal models of autoimmune diseases, including RA, SLE and asthma. This account reports the discovery of a new class of C5aR antagonists through high-throughput screening.
View Article and Find Full Text PDF8,8-Diphenyl-2,3,4,8-tetrahydroimidazo[1,5-a]pyrimidin-6-amine (1) was identified through HTS, as a weak (micromolar) inhibitor of BACE1. X-Ray crystallographic studies indicate the 2-aminoimidazole ring forms key H-bonding interactions with Asp32 and Asp228 in the catalytic site of BACE1. Lead optimization using structure-based focused libraries led to the identification of low nanomolar BACE1 inhibitors such as 20b with substituents which extend from the S(1) to the S(3) pocket.
View Article and Find Full Text PDFThis article describes the syntheses and SAR of a series of imidazolopyrimidine derivatives, which are evaluated as inhibitors of PI3-Kinase (PI3K) and mTOR. These compounds were found to be ATP competitive with good tumor cell growth inhibition, and suppression of pathway specific biomakers such as phosphorylation of Akt at T308.
View Article and Find Full Text PDFThe mammalian target of rapamycin (mTOR) is a central regulator of cell growth, metabolism, and angiogenesis and an emerging target in cancer research. High throughput screening (HTS) of our compound collection led to the identification of 3-(4-morpholin-4-yl-1-piperidin-4-yl-1H-pyrazolo[3,4-d]pyrimidin-6-yl)phenol (5a), a modestly potent and nonselective inhibitor of mTOR and phosphoinositide 3-kinase (PI3K). Optimization of compound 5a, employing an mTOR homology model based on an X-ray crystal structure of closely related PI3Kgamma led to the discovery of 6-(1H-indol-5-yl)-4-morpholin-4-yl-1-[1-(pyridin-3-ylmethyl)piperidin-4-yl]-1H-pyrazolo[3,4-d]pyrimidine (5u), a potent and selective mTOR inhibitor (mTOR IC(50) = 9 nM; PI3Kalpha IC(50) = 1962 nM).
View Article and Find Full Text PDFA novel series of non-hydroxamate tryptophan sulfonamide derivatives containing a butynyloxy P1' moiety was identified as inhibitors of TNF-alpha converting enzyme (TACE). The structure-activity relationship of the series was examined via substitution on the tryptophan indole ring. Of the compounds investigated, 2-(4-(but-2-ynyloxy)phenylsulfonamido)-3-(1-(4-methoxybenzyl)-1H-indol-3-yl)propanoic acid (12p) has the best in vitro potency against isolated TACE enzyme with an IC(50) of 80 nM.
View Article and Find Full Text PDFAccumulation of beta-amyloid (Abeta), produced by the proteolytic cleavage of amyloid precursor protein (APP) by beta- and gamma-secretase, is widely believed to be associated with Alzheimer's disease (AD). Research around the high-throughput screening hit (S)-4-chlorophenylsulfonyl isoleucinol led to the identification of the Notch-1-sparing (9.5-fold) gamma-secretase inhibitor (S)-N-(5-chlorothiophene-2-sulfonyl)-beta,beta-diethylalaninol 7.
View Article and Find Full Text PDFThe protein kinase C (PKC) family of serine/threonine kinases is implicated in a wide variety of cellular processes. The PKC theta (PKCtheta) isoform is involved in TCR signal transduction and T cell activation and regulates T cell mediated diseases, including lung inflammation and airway hyperresponsiveness. Thus inhibition of PKCtheta enzyme activity by a small molecule represents an attractive strategy for the treatment of asthma.
View Article and Find Full Text PDFProteolytic cleavage of amyloid precursor protein by beta-secretase (BACE-1) and gamma-secretase leads to formation of beta-amyloid (A beta) a key component of amyloid plaques, which are considered the hallmark of Alzheimer's disease. Small molecule inhibitors of BACE-1 may reduce levels of A beta and thus have therapeutic potential for treating Alzheimer's disease. We recently reported the identification of a novel small molecule BACE-1 inhibitor N-[2-(2,5-diphenyl-pyrrol-1-yl)-acetyl]guanidine (3.
View Article and Find Full Text PDFThe proteolytic enzyme beta-secretase (BACE-1) produces amyloid beta (Abeta) peptide, the primary constituent of neurofibrillary plaques, implicated in Alzheimer's disease, by cleavage of the amyloid precursor protein. A small molecule inhibitor of BACE-1, (diaminomethylene)-2,5-diphenyl-1H-pyrrole-1-acetamide (1, BACE-1 IC(50)=3.7 microM), was recently described, representing a new small molecule lead.
View Article and Find Full Text PDFN1-Arylsulfonyltryptamines have been identified as 5-HT6 receptor ligands. In particular, N1-(6-chloroimidazo[2,1-b][1,3]thiazole-5-sulfonyl)tryptamine (11q) is a high affinity, potent full agonist (5-HT6 Ki = 2 nM, EC50 = 6.5 nM, Emax = 95.
View Article and Find Full Text PDFBACE1 is an aspartyl protease responsible for cleaving amyloid precursor protein to liberate Abeta, which aggregates leading to plaque deposits implicated in Alzheimer's disease. We have identified small-molecule acylguanidine inhibitors of BACE1. Crystallographic studies show that these compounds form unique hydrogen-bonding interactions with the catalytic site aspartic acids and stabilize the protein in a flap-open conformation.
View Article and Find Full Text PDFThrough high throughput screening, substituted proline sulfonamide 6 was identified as HCV NS5b RNA-dependent RNA polymerase inhibitor. Optimization of various regions of the lead molecule resulted in compounds that displayed good potency and selectivity. The crystal structure of 6 and NS5b polymerase complex confirmed the binding near the active site region.
View Article and Find Full Text PDF1,2,4-Oxadiazolidin-3,5-dione and 1,3,5-triazin-2,4,6-trione scaffolds were employed as templates to incorporate the pharmacophore requirements of cytosolic phospholipase A2alpha substrate mimetics. Inhibitors that are active in both enzyme, and cell-based assays were identified from both classes. From the SAR work carried out and modeling efforts around these templates, the triazinetrione scaffold with an additional substitution point was found to be more favorable.
View Article and Find Full Text PDFA novel class of HCV NS5B RNA dependent RNA polymerase inhibitors containing 2,3,4,9-tetrahydro-1H-carbazole and 1,2,3,4-tetrahydro-cyclopenta[b]indole scaffolds were designed and synthesized. Optimization of the aromatic region showed preference for 5,8-disubstitution pattern in both the scaffolds examined while favoring the n-propyl moiety for the C-1 position. 1,2,3,4-tetrahydro-cyclopenta[b]indole scaffold was slightly more potent than the corresponding 2,3,4,9-tetrahydro-1H-carbazole and analogue 36 displayed an IC50 of 550 nM against HCV NS5B enzyme.
View Article and Find Full Text PDFA novel class of HCV NS5B RNA dependent RNA polymerase inhibitors containing 3,4-dihydro-1H-[1]-benzothieno[2,3-c]pyran and 3,4-dihydro-1H-pyrano[3,4-b]benzofuran scaffolds were designed and synthesized. Optimization of the alkyl substituent in the pyran ring showed preference for an n-propyl group, while 5,8-disubstitution pattern is preferred for the aromatic region. Analog 19 displayed potent activity with an IC(50) of 50 nM against HCV NS5B enzyme and was selective over a panel of polymerases.
View Article and Find Full Text PDFSeveral series of conformationally constrained N1-arylsulfonyltryptamine derivatives were prepared and tested for 5-HT6 receptor binding affinity and ability to modulate cAMP production in a cyclase assay. The 3-piperidin-3-yl-, 3-(1-methylpyrrolidin-2-ylmethyl)-, and 3-pyrrolidin-3-yl-1H-indole arrays (8-13) appear to be able to adopt a conformation that allows high affinity 5-HT6 receptor binding, while the beta-carboline array 14 binds with a significantly weaker (10- to 100-fold) affinity. N1-Benzenesulfonyl-3-piperidin-3-yl-1H-indole 9a is a high affinity full agonist with EC50 = 24 nM.
View Article and Find Full Text PDFA novel series of p21 chemoselective agents containing a pyrazolo[1,5-a]pyrimidin-7-yl phenyl amides were identified by high throughput screening. Optimization of the amide region by parallel synthesis and the iterative design toward understanding structure-activity relationship to improve potency are described. The isopropyl carbamate derivative 34 was identified as a highly chemoselective agent displaying a potency of 51 nM in the p21 deficient cell line.
View Article and Find Full Text PDF5-Arylsulfonylamido-3-(pyrrolidin-2-ylmethyl)-1H-indoles have been identified as high-affinity 5-HT(6) receptor ligands. Within this class, several of the (R)-enantiomers were potent agonists having EC(50) values of 1 nM or less and functioning as full agonists while the (S)-enantiomers displayed moderate antagonist activity.
View Article and Find Full Text PDFA series of N(1)-arylsulfonyl-3-(1,2,3,6-tetrahydropyridin-4-yl)indole derivatives was designed and synthesized. These compounds were shown to have high affinity for the 5-HT(6) receptor. Two analogs, 4-[3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole-1-sulfonyl]-phenylamine 15g and 4-[3-(1,2,3,6-tetrahydropyridin-4-yl)-5-methoxy-1H-indole-1-sulfonyl]-phenylamine 15y, had 0.
View Article and Find Full Text PDFA novel series of HCV NS5B RNA-dependent RNA polymerase inhibitors containing a pyrano[3,4-b]indole scaffold is described leading to the discovery of compound 16, a highly potent and selective inhibitor that is active in the replicon system.
View Article and Find Full Text PDFAntimicrob Agents Chemother
December 2004
A novel nonnucleoside inhibitor of hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), [(1R)-5-cyano-8-methyl-1-propyl-1,3,4,9-tetrahydropyano[3,4-b]indol-1-yl] acetic acid (HCV-371), was discovered through high-throughput screening followed by chemical optimization. HCV-371 displayed broad inhibitory activities against the NS5B RdRp enzyme, with 50% inhibitory concentrations ranging from 0.3 to 1.
View Article and Find Full Text PDFA novel series of HCV NS5B RNA dependent RNA polymerase inhibitors containing a naphthalene carboxamide scaffold were identified by high throughput screening. Optimization of substituents by parallel synthesis and the iterative design towards understanding structure-activity relationship to improve potency are described. Tetra substituted naphthalene 31 displayed potent activity with IC(50) of 120 nM against HCV NS5B enzyme and was selective over a panel of polymerases.
View Article and Find Full Text PDFA novel series of PAI-1 inhibitors containing an oxadiazolidinedione moiety were identified by high through-put screening. Optimization of substituents by parallel synthesis and the iterative design toward understanding structure-activity relationship to improve potency are described.
View Article and Find Full Text PDF