Publications by authors named "John W B Hershey"

There is a desire to engineer mammalian host cell lines to improve cell growth/biomass accumulation and recombinant biopharmaceutical protein production in industrially relevant cell lines such as the CHOK1 and HEK293 cell lines. The over-expression of individual subunits of the eukaryotic translation factor eIF3 in mammalian cells has previously been shown to result in oncogenic properties being imparted on cells, including increased cell proliferation and growth and enhanced global protein synthesis rates. Here we report on the engineering of CHOK1 and HEK cells to over-express the eIF3i and eIF3c subunits of the eIF3 complex and the resultant impact on cell growth and a reporter of exogenous recombinant protein production.

View Article and Find Full Text PDF

Protein synthesis and its regulation are central to all known forms of life and impinge on biological arenas as varied as agriculture, biotechnology, and medicine. Otherwise known as translation and translational control, these processes have been investigated with increasing intensity since the middle of the 20th century, and in increasing depth with advances in molecular and cell biology. We review the origins of the field, focusing on the underlying concepts and early studies of the cellular machinery and mechanisms involved.

View Article and Find Full Text PDF

Protein synthesis involves a complex machinery comprising numerous proteins and RNAs joined by noncovalent interactions. Its function is to link long chains of amino acids into proteins with precise sequences as encoded by the genome. Regulation of protein synthesis, called translational control, occurs both at a global level and at specific messenger RNAs (mRNAs).

View Article and Find Full Text PDF

The translation elongation factor eIF5A is conserved through evolution and is necessary to rescue the ribosome during translation elongation of polyproline-containing proteins. Although the site of eIF5A binding to the ribosome is known, no systematic analysis has been performed so far to determine the important residues on the surface of eIF5A required for ribosome binding. In this study, we used clustered charged-to-alanine mutagenesis and structural modeling to address this question.

View Article and Find Full Text PDF

eIF5A is the only protein known to contain the essential and unique amino acid residue hypusine. eIF5A functions in both translation initiation due to its stimulation of methionyl-puromycin synthesis and translation elongation, being highly required for peptide-bound formation of specific ribosome stalling sequences such as poly-proline. The functional interaction between eIF5A, tRNA, and eEF2 on the surface of the ribosome is further clarified herein.

View Article and Find Full Text PDF

The eukaryotic initiation factor eIF5A is a translation factor that, unusually, has been assigned functions in both initiation and elongation. Additionally, it is implicated in transcription, mRNA turnover and nucleocytoplasmic transport. Two eIF5A isoforms are generated from distinct but related genes.

View Article and Find Full Text PDF

Specific individual subunits of eIF3 are elevated or reduced in numerous human tumors, and their ectopic overexpression in immortal cells can result in malignant transformation. The structure and assembly of eIF3 and its role in promoting mRNA and methionyl-tRNAi binding to the ribosome during the initiation phase of protein synthesis are described. Methods employed to detect altered levels of eIF3 subunits in cancers are critically evaluated in order to conclude rigorously that such subunits may cause malignant transformation.

View Article and Find Full Text PDF

eIF3 (eukaryotic initiation factor 3) is the largest and most complex eukaryotic mRNA translation factor in terms of the number of protein components or subunits. In mammals, eIF3 is composed of 13 different polypeptide subunits, of which five, i.e.

View Article and Find Full Text PDF

Recruitment of mRNA to the 40S ribosomal subunit requires the coordinated interaction of a large number of translation initiation factors. In mammals, the direct interaction between eukaryotic initiation factor 4G (eIF4G) and eIF3 is thought to act as the molecular bridge between the mRNA cap-binding complex and the 40S subunit. A discrete ∼90 amino acid domain in eIF4G is responsible for binding to eIF3, but the identity of the eIF3 subunit(s) involved is less clear.

View Article and Find Full Text PDF

We introduce here the inaugural issue of the new scientific journal Translation. The overarching aim of this endeavor is to establish a new forum for a broad spectrum of research in the area of protein synthesis in living systems ranging from structural biochemical, evolutionary and regulatory aspects of translation to the fundamental questions related to post-translational control of somatic phenomena in multicellular organisms including human behavior and health. The journal will publish high quality research articles, provide novel insights, ask provocative questions and discuss new hypothesis in this emerging field.

View Article and Find Full Text PDF

Translational control plays an essential role in the regulation of gene expression. It is especially important in defining the proteome, maintaining homeostasis, and controlling cell proliferation, growth, and development. Numerous disease states result from aberrant regulation of protein synthesis, so understanding the molecular basis and mechanisms of translational control is critical.

View Article and Find Full Text PDF

The delivery of Met-tRNA(i) to the 40S ribosomal subunit is thought to occur by way of a ternary complex (TC) comprising eIF2, GTP and Met-tRNA(i). We have generated from purified human proteins a stable multifactor complex (MFC) comprising eIF1, eIF2, eIF3 and eIF5, similar to the MFC reported in yeast and plants. A human MFC free of the ribosome also is detected in HeLa cells and rabbit reticulocytes, indicating that it exists in vivo.

View Article and Find Full Text PDF

Eukaryotic translation requires a suite of proteins known as eukaryotic initiation factors (eIFs). These molecular effectors oversee the highly regulated initiation phase of translation. Essential to eukaryotic translation initiation is the protein eIF2, a heterotrimeric protein composed of the individually distinct subunits eIF2α, eIF2β, and eIF2γ.

View Article and Find Full Text PDF

The fragile X mental retardation 1 (FMR1) gene contains a CGG repeat within its 5' untranslated region (5'UTR) that, when expanded to 55-200 CGG repeats (premutation allele), can result in the late-onset neurodegenerative disorder, fragile X-associated tremor/ataxia syndrome. The CGG repeat is expected to form a highly stable secondary structure that is capable of inhibiting 5'-cap-dependent translation. Paradoxically, translation in vivo is only mildly impaired within the premutation range, suggesting that other modes of translation initiation may be operating.

View Article and Find Full Text PDF

Maintenance of cell homeostasis and regulation of cell proliferation depend importantly on regulating the process of protein synthesis. Many disease states arise when disregulation of protein synthesis occurs. This review focuses on mechanisms of translational control and how disregulation results in cell malignancy.

View Article and Find Full Text PDF

The methodology developed in the research presented herein makes use of chaotropic solvents to gently dissociate subunits from an intact macromolecular complex and subsequently allows for the measurement of collision cross section (CCS) for both the recombinant (R-eIF3k) and solvent dissociated form of the subunit (S-eIF3k). In this particular case, the k subunit from the eukaryotic initiation factor 3 (eIF3) was investigated in detail. Experimental and theoretical CCS values show both the recombinant and solvent disrupted forms of the protein to be essentially the same.

View Article and Find Full Text PDF

Eukaryotic protein synthesis begins with mRNA positioning in the ribosomal decoding channel in a process typically controlled by translation-initiation factors. Some viruses use an internal ribosome entry site (IRES) in their mRNA to harness ribosomes independently of initiation factors. We show here that a ribosome conformational change that is induced upon hepatitis C viral IRES binding is necessary but not sufficient for correct mRNA positioning.

View Article and Find Full Text PDF

eIF3f is a subunit of eukaryotic initiation factor 3 (eIF3). We previously showed that eIF3f is phosphorylated by cyclin dependent kinase 11 (CDK11(p46)) which is an important effector in apoptosis. Here, we identified a second eIF3f phosphorylation site (Thr119) by CDK11(p46) during apoptosis.

View Article and Find Full Text PDF

Dysregulation of protein synthesis has been implicated in oncogenesis through a mechanism whereby "weak" mRNAs encoding proteins involved in cell proliferation are strongly translated when the protein synthesis apparatus is activated. Previous work has determined that many cancer cells contain high levels of eIF3h, a protein subunit of translation initiation factor eIF3, and overexpression of eIF3h malignantly transforms immortal NIH-3T3 cells. This is a general feature of eIF3h, as high levels also affect translation, proliferation, and a number of malignant phenotypes of CHO-K1 and HeLa cells and, most significantly, of a primary prostate cell line.

View Article and Find Full Text PDF

In mammalian cells, nonsense-mediated mRNA decay (NMD) generally requires that translation terminates sufficiently upstream of a post-splicing exon junction complex (EJC) during a pioneer round of translation. The subsequent binding of Upf1 to the EJC triggers Upf1 phosphorylation. We provide evidence that phospho-Upf1 functions after nonsense codon recognition during steps that involve the translation initiation factor eIF3 and mRNA decay factors.

View Article and Find Full Text PDF

The eukaryotic translation initiation factor 5A (eIF5A) is the only protein that contains hypusine [Nepsilon-(4-amino-2-hydroxybutyl)lysine], which is required for its activity. Hypusine is formed by post-translational modification of one specific lysine (Lys50 for human eIF5A) by deoxyhypusine synthase and deoxyhypusine hydroxylase. To investigate the features of eIF5A required for its activity, we generated 49 mutations in human eIF5A-1, with a single amino acid substitution at the highly conserved residues or with N-terminal or C-terminal truncations, and tested mutant proteins in complementing the growth of a Saccharomyces cerevisiae eIF5A null strain.

View Article and Find Full Text PDF