Publications by authors named "John V McDowell"

Sphingobacterium sp. strain ML3W was isolated from the wing of a bat infected with white nose syndrome. We report the complete 5.

View Article and Find Full Text PDF

Periodontitis is the most common disease of microbial etiology in humans. Periopathogen survival is dependent upon evasion of complement-mediated destruction. Treponema denticola, an important contributor to periodontitis, evades killing by the alternative complement cascade by binding factor H (FH) to its surface.

View Article and Find Full Text PDF

The ability of the Lyme disease spirochetes to establish an infection in mammals is dependent in part on proteins of tick origin. Schuijt et al. (2011) investigate the role of the tick-derived protein, TSLPI, in spirochete transmission and in the evasion of killing by the lectin complement pathway.

View Article and Find Full Text PDF

Treponema denticola is a primary etiological agent of periodontal disease. T. denticola evades complement-mediated killing by binding to the host's factor H (FH), a negative regulator of the alternative complement pathway.

View Article and Find Full Text PDF

Borrelia burgdorferi CspZ (BBH06/BbCRASP-2) binds the complement regulatory protein factor H (FH) and additional unidentified serum proteins. The goals of this study were to assess the ligand binding capability of CspZ orthologs derived from an extensive panel of human Lyme disease isolates and to further define the molecular basis of the interaction between FH and CspZ. While most B.

View Article and Find Full Text PDF

Treponema denticola, a spirochete associated with periodontitis, is abundant at the leading edge of subgingival plaque, where it interacts with gingival epithelia. T. denticola produces a number of virulence factors, including dentilisin, a protease which is cytopathic to host cells, and FhbB, a unique T.

View Article and Find Full Text PDF

The gene encoding the Treponema denticola factor H-like protein 1 (FHL-1) binding protein, FhbB, was recovered and characterized. Sequence conservation, expression, and properties of FhbB were analyzed. The identification of FhbB represents an important step in understanding the contribution of FHL-1 binding in T.

View Article and Find Full Text PDF

BBA68 (BbCRASP-1) of the Lyme disease spirochetes binds human factor H (FH) and FH-like protein 1 (FHL-1). Here we assess transcription of the BBA68 gene and production of BBA68 in infected mice and humans using real-time reverse transcriptase PCR and immunoblotting. The species specificity of FH binding to BBA68 was also tested.

View Article and Find Full Text PDF

The binding of Borrelia burgdorferi OspE, OspF, and family 163 (Elp) proteins to factor H/factor H-like protein 1 (FHL-1) and other serum proteins from different animals was assessed. OspE paralogs bound factor H and unidentified serum proteins from a subset of animals, while OspF and Elp proteins did not. These data advance our understanding of factor H binding, the host range of the Lyme spirochetes, and the expanding role of OspE in pathogenesis.

View Article and Find Full Text PDF

Treponema denticola is an important contributor to periodontal disease. In this study we investigated the ability of T. denticola to bind the complement regulatory proteins factor H and factor H-like protein 1 (FHL-1).

View Article and Find Full Text PDF

Factor H and factor H like-protein 1 (FHL-1) are complement regulatory proteins that serve as cofactors for the factor I-mediated cleavage of C3b. Some Lyme disease and relapsing fever spirochete species bind factor H to their surface to facilitate immune evasion. The Lyme disease spirochetes produce several factor H binding proteins (FHBPs) that form two distinct classes.

View Article and Find Full Text PDF

Factor H (fH) is an important regulator of the alternative complement cascade. Several human pathogens have been shown to bind fH to their surface, a process that facilitates immune evasion or cell to cell interaction. Among the pathogens that bind fH are some Borrelia species associated with Lyme disease and relapsing fever.

View Article and Find Full Text PDF

In North America, tick-borne relapsing fever (TBRF) is caused by the spirochete species Borrelia hermsii, Borrelia parkeri, and Borrelia turicatae. We previously demonstrated that some isolates of B. hermsii and B.

View Article and Find Full Text PDF

Some Borrelia species associated with Lyme disease bind the complement-regulatory protein factor H (fH), a process that may aid in immune evasion. In this report we demonstrate that some Borrelia species associated with relapsing fever bind fH, but not those associated with avian borreliosis and epizootic bovine abortion. Cell-bound fH was also found to mediate cleavage of exogenously supplied human C3b, demonstrating the biological relevance of fH binding and its possible importance in the pathogenesis of the relapsing-fever spirochetes.

View Article and Find Full Text PDF

Some Lyme disease spirochete isolates can bind complement regulatory protein factor H (fH), a process that may allow evasion of complement-mediated killing. Here we demonstrate significant differences in the fH binding capabilities of species of the Borrelia burgdorferi sensu lato complex. The percentages of B.

View Article and Find Full Text PDF

Immune evasion by Lyme spirochetes is a multifactorial process involving numerous mechanisms. The OspE protein family undergoes antigenic variation during infection and binds factor H (fH) and possibly FHL-1/reconectin. In Borrelia burgdorferi B31MI, the OspE family consists of three paralogs: BBL39 (ErpA), BBP38, and BBN38 (ErpP).

View Article and Find Full Text PDF

It has been postulated that the vls system of the Lyme disease spirochetes contributes to immune evasion through antigenic variation. While it is clear that vlsE undergoes sequence change within its variable regions at a high frequency during the early stages of infection, a definitive role in immune evasion has not been demonstrated. In this report we assessed the murine and human humoral immune response to recombinant (r)-VlsE variants that originally arose during infection in mice.

View Article and Find Full Text PDF