Human liver microsomes (HLM) and human hepatocytes (HHEP) are two common in vitro systems used in metabolic stability and inhibition studies. The comparison between the assays using the two systems can provide mechanistic insights on the interplay of metabolism, passive permeability and transporters. This study investigated the critical factors impacting the unbound intrinsic clearance (CL) and IC of CYP3A inhibition between HLM and HHEP.
View Article and Find Full Text PDFHepatic uptake transporters [solute carriers (SLCs)], including organic anion transporting polypeptide (OATP) 1B1, OATP1B3, OATP2B1, sodium-dependent taurocholate cotransporting polypeptide (NTCP), and organic anion (OAT2) and organic cation (OCT1) transporters, play a key role in determining the systemic and liver exposure of chemically diverse drugs. Here, we established a phenotyping approach to quantify the contribution of the six SLCs, and passive diffusion, to the overall uptake using plated human hepatocytes (PHHs). First, selective inhibitor conditions were identified by screening about 20 inhibitors across the six SLCs using single-transfected human embryonic kidney 293 cells.
View Article and Find Full Text PDFUnderstanding the quantitative implications of P-glycoprotein and breast cancer resistance protein efflux is a key hurdle in the design of effective, centrally acting or centrally restricted therapeutics. Previously, a comprehensive physiologically based pharmacokinetic model was developed to describe the in vivo unbound brain-to-plasma concentration ratio as a function of efflux activity measured in vitro. In the present work, the predictive utility of this framework was examined through application to in vitro and in vivo data generated on 133 unique compounds across three preclinical species.
View Article and Find Full Text PDFBackground: The number of new chemical entities and types of in vitro and in vivo samples that require bioanalysis in drug discovery is large and diverse. In addition, method development time is limited as data turnaround is the highest priority. These circumstances require that a well-defined set of bioanalysis options be available in short timeframes to triage samples for analysis.
View Article and Find Full Text PDFHistorically, recovery had been used to evaluate the data quality of plasma protein binding or tissue binding obtained from equilibrium dialysis assays. Low recovery was often indicative of high nonspecific binding, instability, or low solubility. This study showed that, when equilibrium was fully established in the dialysis assay, low recovery due to nonspecific binding had no impact on the determination of fraction unbound.
View Article and Find Full Text PDFPermeability is an important property of drug candidates. The Madin-Darby canine kidney cell line (MDCK) permeability assay is widely used and the primary concern of using MDCK cells is the presence of endogenous transporters of nonhuman origin. The canine P-glycoprotein (Pgp) can interfere with permeability and transporter studies, leading to less reliable data.
View Article and Find Full Text PDFSpecies independence of brain tissue binding was assessed with a large number of structurally diverse compounds using equilibrium dialysis with brain homogenates of seven species and strains (Wistar Han rat, Sprague-Dawley rat, CD-1 mouse, Hartley guinea pig, beagle dog, cynomolgus monkey, and human). The results showed that the fractions unbound of the seven species and strains were strongly correlated with correlation coefficients ranging from 0.93 to 0.
View Article and Find Full Text PDFIntroduction: Delayed ventricular repolarisation is manifested electrocardiographically in a prolongation of the QT interval. Such prolongation can lead to potentially fatal Torsades de Pointes. Moxifloxacin is a fluoroquinolone antibiotic which has been associated with QT prolongation and, as a result, is recommended by the regulatory authorities as a positive control in thorough QT studies performed to evaluate the potential of new chemical entities to induce QT prolongation in humans.
View Article and Find Full Text PDFApparent intrinsic clearance (CLia) determined from microsomal stability assays is a cornerstone in drug discovery. Categorical bins are routinely applied to this end point to facilitate analysis. However, such bins ignore the interdependent nature of apparent intrinsic microsome clearance on several ADME parameters.
View Article and Find Full Text PDFEvaluation and optimization of drug metabolism and pharmacokinetic data plays an important role in drug discovery and development and several reliable in vitro ADME models are available. Recently higher throughput in vitro ADME screening facilities have been established in order to be able to evaluate an appreciable fraction of synthesized compounds. The ADME screening process can be dissected in five distinct steps: (1) plate management of compounds in need of in vitro ADME data, (2) optimization of the MS/MS method for the compounds, (3) in vitro ADME experiments and sample clean up, (4) collection and reduction of the raw LC-MS/MS data and (5) archival of the processed ADME data.
View Article and Find Full Text PDFNicotinamide (2) is a potent and selective inhibitor of the PDE4D isozyme and as a chemical tool selectively blocks eosinophil mediator release and chemotaxis thus linking the role of PDE4D to eosinophil function.
View Article and Find Full Text PDFProstaglandin (PG)E2 is a potent mediator of pain and inflammation, and high levels of this lipid mediator are observed in numerous disease states. The inhibition of PGE2 production to control pain and to treat diseases such as rheumatoid arthritis to date has depended on nonsteroidal antiinflammatory agents such as aspirin. However, these agents inhibit the synthesis of all prostanoids.
View Article and Find Full Text PDF