Publications by authors named "John Tse"

Article Synopsis
  • - Researchers developed a new method to reduce thermal conductivity in materials, which is crucial for applications like thermoelectrics, by manipulating the dynamics of guest molecules within a structure.
  • - By applying pressure to methane hydrate, they found that enhanced interactions between rotating molecules and lattice vibrations lead to significant decreases in thermal conductivity, nearly tripling the suppression effect.
  • - This technique highlights a universal approach to control heat transport in various material systems by optimizing the strength of interactions between rotating molecules and the lattice.
View Article and Find Full Text PDF

Despite its ubiquitous nature, the atomic structure of water in its liquid state is still controversially debated. We use a combination of X-ray Raman scattering spectroscopy in conjunction with ab initio and path integral molecular dynamics simulations to study the local atomic and electronic structure of water under high pressure conditions. Systematically increasing fingerprints of non-hydrogen-bonded H[Formula: see text]O molecules in the first hydration shell are identified in the experimental and computational oxygen K-edge excitation spectra.

View Article and Find Full Text PDF

The high-pressure structures of K-Ag alloys were examples of pressure-induced electron transfer from the electropositive potassium to the electronegative silver. We re-examined the crystal and electronic structures of KAg, KAg, and KAg using powder X-ray diffraction and theoretical calculations. Our findings establish a connection between the morphologies of these three phases and the precursor face-centered cubic Ag.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to develop an enzyme-triggered, therapeutic-releasing bandage contact lens material using a unique gelatin methacrylate formulation (GelMA+).

Methods: Two GelMA+ formulations, 20% /, and 30% / concentrations, were prepared through UV polymerization. The physical properties of the material, including porosity, tensile strain, and swelling ratio, were characterized.

View Article and Find Full Text PDF

The pressure-induced reaction between xenon (Xe) and other non-inert gas elements and the resultant crystal structures have attracted great interest. In this work, we carried out extensive simulations on the crystal structures of Xe-alkali metal (Xe-AM) systems under high pressures. Among all predicted compounds, KXe and RbXe are found to become stable at a pressure of ∼16 GPa by adopting a cubic symmetry of space group 3̄.

View Article and Find Full Text PDF

The study of nonequilibrium transition dynamics on structural transformation from the second to microsecond regime, a time scale between static and shock compression, is an emerging field of high-pressure research. There are ample opportunities to uncover novel physical phenomena within this time regime. Herein, we briefly review the development and application of a dynamic compression technique based on a diamond anvil cell (DAC) and time-resolved X-ray diffraction (TRXRD) for the study of time-, pressure-, and temperature-dependent structural dynamics.

View Article and Find Full Text PDF

The Fe isomer shift (IS) of pure iron has been measured up to 100 GPa using synchrotron Mössbauer spectroscopy in the time domain. Apart from the expected discontinuity due to the α → ε structural and spin transitions, the IS decreases monotonically with increasing pressure. The absolute shifts were reproduced without semi-empirical calibrations by periodic density functional calculations employing extensive localized basis sets with several common density functionals.

View Article and Find Full Text PDF

We study pressure-induced isostructural electronic phase transitions in the prototypical mixed valence and strongly correlated material EuO using the global-hybrid density functional theory. The simultaneous presence in the valence of highly localized d- and f-type bands and itinerant s- and p-type states, as well as the half-filled f-type orbital shell with seven unpaired electrons on each Eu atom, have made the description of the electronic features of this system a challenge. The electronic band structure, density of states, and atomic oxidation states of EuO are analyzed in the 0-50 GPa pressure range.

View Article and Find Full Text PDF

Core/shell nanocrystals (NCs) integrate collaborative functionalization that would trigger advanced properties, such as high energy conversion efficiency, nonblinking emission, and spin-orbit coupling. Such prospects are highly correlated with the crystal structure of individual constituents. However, it is challenging to achieve novel phases in core/shell NCs, generally non-existing in bulk counterparts.

View Article and Find Full Text PDF
Article Synopsis
  • ADA deficiency (ADA-SCID) is a serious and rare condition affecting the immune system, requiring innovative treatments like gene therapy.
  • Researchers treated 50 ADA-SCID patients using a method involving their own modified stem cells and saw a 100% survival rate over 24-36 months, with high levels of event-free survival and successful immune reconstitution.
  • The study concluded that this gene therapy is effective and safe, with minimal adverse effects and no serious complications reported, highlighting its potential as a promising treatment for ADA-SCID.
View Article and Find Full Text PDF

Ultrathin two-dimensional catalysts are attracting attention in the field of electrocatalytic hydrogen evolution. This work describe a composite material design in which CoP nanoparticles doped with Ru single-atom sites supported on carbon dots (CDs) single-layer nanosheets formed by splicing CDs (Ru CoP/CDs). Small CD fragments bore abundant functional groups, analogous to pieces of a jigsaw puzzle, and could provide a high density of binding sites to immobilize Ru CoP.

View Article and Find Full Text PDF

High-pressure metallic β-Sn silicon (Si-II), depending on temperature, decompression rate, stress, etc., may transform to diverse metastable forms with promising semiconducting properties under decompression. However, the underlying mechanisms governing the different transformation paths are not well understood.

View Article and Find Full Text PDF

Transport properties like diffusivity and viscosity of melts dictated the evolution of the Earth's early magma oceans. We report the structure, density, diffusivity, electrical conductivity and viscosity of a model basaltic (CaMgAlSiO) melt from first-principles molecular dynamics calculations at temperatures of 2200 K (0 to 82 GPa) and 3000 K (40-70 GPa). A key finding is that, although the density and coordination numbers around Si and Al increase with pressure, the Si-O and Al-O bonds become more ionic and weaker.

View Article and Find Full Text PDF

Recurrent corneal erosion (RCE) is a condition where the superficial corneal epithelial cells sporadically shed because of poor attachment to the underlying basement membrane, resulting in pain and discomfort. RCE-afflicted corneas exhibit elevated biological factors and enzymes, such as matrix metalloproteinase (MMP)-9. Soft bandage contact lenses (BCLs) are a commonly recommended treatment as they permit continued vision during recovery.

View Article and Find Full Text PDF

A zinc-based single-atom catalyst has been recently explored with distinguished stability, of which the fully occupied Zn 3d electronic configuration is Fenton-reaction-inactive, but the catalytic activity is thus inferior. Herein, we report an approach to manipulate the s-band by constructing a B,N co-coordinated Zn-B/N-C catalyst. We confirm both experimentally and theoretically that the unique N -Zn-B configuration is crucial, in which Zn (3d 4s ) can hold enough delocalized electrons to generate suitable binding strength for key reaction intermediates and promote the charge transfer between catalytic surface and ORR reactants.

View Article and Find Full Text PDF

Cardiovascular diseases remain the leading cause of death worldwide. Patency rates of clinically-utilized small diameter synthetic vascular grafts such as Dacron® and expanded polytetrafluoroethylene (ePTFE) to treat cardiovascular disease are inadequate due to lack of endothelialization. Sodium trimetaphosphate (STMP) crosslinked PVA could be potentially employed as blood-compatible small diameter vascular graft for the treatment of cardiovascular disease.

View Article and Find Full Text PDF

The pharmacokinetics of low-dose busulfan (BU) were investigated as a nonmyeloablative conditioning regimen for autologous gene therapy (GT) in pediatric subjects with adenosine deaminase-deficient severe combined immunodeficiency disease (ADA SCID). In 3 successive clinical trials, which included either γ-retroviral (γ-RV) or lentiviral (LV) vectors, subjects were conditioned with BU using different dosing nomograms. The first cohort received BU doses based on body surface area (BSA), the second cohort received doses based on actual body weight (ABW), and in the third cohort, therapeutic drug monitoring (TDM) was used to target a specific area under the concentration-time curve (AUC).

View Article and Find Full Text PDF

Atomically thin diamond, also called diamane, is a two-dimensional carbon allotrope and has attracted considerable scientific interest because of its potential physical properties. However, the successful synthesis of a pristine diamane has up until now not been achieved. We demonstrate the realization of a pristine diamane through diamondization of mechanically exfoliated few-layer graphene via compression.

View Article and Find Full Text PDF

Ice amorphization, low- to high-density amorphous (LDA-HDA) transition, as well as (re)crystallization in ice, under compression have been studied extensively due to their fundamental importance in materials science and polyamorphism. However, the nature of the multiple-step "reverse" transformation from metastable high-pressure ice to the stable crystalline form under reduced pressure is not well understood. Here, we characterize the rate and temperature dependence of the structural evolution from ice VII to ice I recovered at low pressure (∼5 mTorr) using in situ time-resolved X-ray diffraction.

View Article and Find Full Text PDF

In a superionic (SI) ice phase, oxygen atoms remain crystallographically ordered while protons become fully diffusive as a result of intramolecular dissociation. Ice VII's importance as a potential candidate for a SI ice phase has been conjectured from anomalous proton diffusivity data. Theoretical studies indicate possible SI prevalence in large-planet mantles (e.

View Article and Find Full Text PDF

The general availability of third generation synchrotron sources has ushered in a new era of high pressure research. The crystal structure of materials under compression can now be determined by X-ray diffraction using powder samples and, more recently, from multi-nano single crystal diffraction. Concurrently, these experimental advancements are accompanied by a rapid increase in computational capacity and capability, enabling the application of sophisticated quantum calculations to explore a variety of material properties.

View Article and Find Full Text PDF