Publications by authors named "John Tomaszeweski"

Rationale And Objectives: Needle biopsy is currently the only way to confirm prostate cancer. To increase prostate cancer diagnostic rate, needles are expected to be deployed at suspicious cancer locations. High-contrast magnetic resonance (MR) imaging provides a powerful tool for detecting suspicious cancerous tissues.

View Article and Find Full Text PDF

In this paper we present a computer-aided diagnosis (CAD) system to automatically detect prostatic adenocarcinoma from high resolution digital histopathological slides. This is especially desirable considering the large number of tissue slides that are currently analyzed manually - a laborious and time-consuming task. Our methodology is novel in that texture-based classification is performed using a hierarchical classifier within a multi-scale framework.

View Article and Find Full Text PDF

This paper presents a deformable registration method to co-register histological images with MR images of the same prostate. By considering various distortion and cutting artifacts in histological images and also fundamentally different nature of histological and MR images, our registration method is thus guided by two types of landmark points that can be reliably detected in both histological and MR images, i.e.

View Article and Find Full Text PDF

Current diagnosis of prostatic adenocarcinoma is done by manual analysis of biopsy tissue samples for tumor presence. However, the recent advent of whole slide digital scanners has made histopathological tissue specimens amenable to computer-aided diagnosis (CAD). In this paper, we present a CAD system to assist pathologists by automatically detecting prostate cancer from digitized images of prostate histological specimens.

View Article and Find Full Text PDF

Recently there has been a great deal of interest in algorithms for constructing low-dimensional feature-space embeddings of high dimensional data sets in order to visualize inter- and intra-class relationships. In this paper we present a novel application of graph embedding in improving the accuracy of supervised classification schemes, especially in cases where object class labels cannot be reliably ascertained. By refining the initial training set of class labels we seek to improve the prior class distributions and thus classification accuracy.

View Article and Find Full Text PDF

Prostatic adenocarcinoma is the most commonly occurring cancer among men in the United States, second only to skin cancer. Currently, the only definitive method to ascertain the presence of prostatic cancer is by trans-rectal ultrasound (TRUS) directed biopsy. Owing to the poor image quality of ultrasound, the accuracy of TRUS is only 20%-25%.

View Article and Find Full Text PDF