In this work, a SiGeSn/GeSn/SiGeSn single quantum well was grown and characterized. The sample has a thicker GeSn well of 22nm compared to a previously reported 9nm well configuration. The thicker well leads to: (i) lowered ground energy level in Γ valley offering more bandgap directness; (ii) increased carrier density in the well; and (iii) improved carrier collection due to increased barrier height.
View Article and Find Full Text PDFIn this work we study the nature of the band gap in GeSn alloys for use in silicon-based lasers. Special attention is paid to Sn-induced band mixing effects. We demonstrate from both experiment and ab-initio theory that the (direct) Γ-character of the GeSn band gap changes continuously with alloy composition and has significant Γ-character even at low (6%) Sn concentrations.
View Article and Find Full Text PDFThe recent demonstration of the GeSn laser opened a promising route towards the monolithic integration of light sources on the Si platform. A GeSn laser with higher Sn content is highly desirable to enhance the emission efficiency and to cover longer wavelength. This Letter reports optically pumped edge-emitting GeSn lasers operating at 3 μm, whose device structure featured Sn compositionally graded with a maximum Sn content of 22.
View Article and Find Full Text PDFThe GeSn-based quantum wells (QWs) have been investigated recently for the development of efficient GeSn emitters. Although our previous study indicated that the direct bandgap well with type-I band alignment was achieved, the demonstrated QW still has insufficient carrier confinement. In this work, we report the systematic study of light emission from the GeSn/GeSn/GeSn double QW structure.
View Article and Find Full Text PDFRecent development of group-IV alloy GeSn indicates its bright future for the application of mid-infrared Si photonics. Relaxed GeSn with high material quality and high Sn composition is highly desirable to cover mid-infrared wavelength. However, its crystal growth remains a great challenge.
View Article and Find Full Text PDFA SiGeSn/GeSn/SiGeSn single quantum well structure was grown using an industry standard chemical vapor deposition reactor with low-cost commercially available precursors. The material characterization revealed the precisely controlled material growth process. Temperature-dependent photoluminescence spectra were correlated with band structure calculation for a structure accurately determined by high-resolution x-ray diffraction and transmission electron microscopy.
View Article and Find Full Text PDFNormal-incidence GeSn photodiode detectors with Sn compositions of 7 and 10% have been demonstrated. Such detectors were based on Ge/GeSn/Ge double heterostructures grown directly on a Si substrate via a chemical vapor deposition system. A temperature-dependence study of these detectors was conducted using both electrical and optical characterizations from 300 to 77 K.
View Article and Find Full Text PDFThe GeSn direct gap material system, with Si complementary-metal-oxide semiconductor (CMOS) compatibility, presents a promising solution for direct incorporation of focal plane arrays with short wave infrared detection on Si. A temperature dependence study of GeSn photoconductors with 0.9, 3.
View Article and Find Full Text PDFHydrolysis reactions of silyl-germyl triflates are used to produce ether-like Si-Ge hydride compounds including H(3)SiOSiH(3) and the previously unknown O(SiH(2)GeH(3))(2). The structural, energetic and vibrational properties of the latter were investigated by experimental and quantum chemical simulation methods. A combined Raman, infrared and theoretical analysis indicated that the compound consists of an equal mixture of linear and gauche isomers in analogy to the butane-like H(3)GeSiH(2)SiH(2)GeH(3) with an exceedingly small torsional barrier of approximately 0.
View Article and Find Full Text PDFUnderstanding impurity rejection in a drug substance crystallization process is valuable for establishing purity specifications for the starting materials used in the process. Impurity rejection has been determined for all known ABT-510 impurities and for many of the reasonable & conceivable impurities. Based on this study, a very high purity specification (e.
View Article and Find Full Text PDFGe(1-x-y)Si(x)Sn(y) alloys have emerged as a new class of highly versatile IR semiconductors offering the potential for independent variation of band structure and lattice dimension, making them the first practical group IV ternary system fully compatible with Si CMOS processing. In this paper we develop and apply new synthetic protocols based on designer molecular hydrides of Si, Ge, and Sn to demonstrate this concept from a synthesis perspective. Variation of the Si/Sn ratio in the ternary leads to an entirely new family of semiconductors exhibiting tunable direct band gaps (E(o)) ranging from 0.
View Article and Find Full Text PDFA modification of wet agglomeration technique is developed and demonstrated by agglomerative crystallization process for a nonapeptide (ABT-510) to improve processing of needle like crystals. Our procedure involves exploiting partial miscibility of the crystallization solvent system for in situ generation of a wetting agent with suitable agglomerative properties. Experiences with ABT-510 show that a relatively small fraction of phase separation (1-5%) is needed to create enough wetting agent for effective agglomeration.
View Article and Find Full Text PDFWe describe the synthesis of a new family of chlorinated Si-Ge hydrides based on the formula ClnH6-nSiGe. Selectively controlled chlorination of H3SiGeH3 is provided by reactions with BCl3 to produce ClH2SiGeH3 (1) and Cl2HSiGeH3 (2). This represents a viable single-step route to the target compounds in commercial yields for semiconductor applications.
View Article and Find Full Text PDFThe synthesis of butane-like (GeH(3))(2)(SiH(2))(2) (1), (GeH(3))(2)SiH(SiH(3)) (2), and (GeH(3))(2)(SiH(2)GeH(2)) (3) Si-Ge hydrides with applications in low-temperature synthesis of Ge-rich Si(1-x)Ge(x) optoelectronic alloys has been demonstrated. The compositional, vibrational, structural, and thermochemical properties of these compounds were studied by FTIR, multinuclear NMR, mass spectrometry, Rutherford backscattering, and density functional theory (DFT) simulations. The analyses indicate that the linear (GeH(3))(2)(SiH(2))(2) (1) and (GeH(3))(2)(SiH(2)GeH(2)) (3) compounds exist as a mixture of the classic normal (n) and gauche (g) conformational isomers which do not seem to interconvert at 22 degrees C.
View Article and Find Full Text PDFThe synthesis of the entire silyl-germyl sequence of molecules (H(3)Ge)(x)SiH(4)(-)(x) (x = 1-4) has been demonstrated. These include the previously unknown (H(3)Ge)(2)SiH(2), (H(3)Ge)(3)SiH, and (H(3)Ge)(4)Si species as well as the H(3)GeSiH(3) analogue which is obtained in practical high-purity yields as a viable alternative to disilane and digermane for semiconductor applications. The molecules are characterized by FTIR, multinuclear NMR, mass spectrometry, and Rutherford backscattering.
View Article and Find Full Text PDF