Publications by authors named "John Tanner"

Background: First tarsometatarsal (TMT) arthrodesis is one of the most common procedures performed each year for the correction of hallux valgus deformity, and nonunion rates for first TMT arthrodesis are commonly reported to be between 4% and 15%. The purpose of this study was to evaluate the effectiveness of an intramedullary nail system in patients requiring first TMT arthrodesis.

Methods: An ambispective, multisurgeon, consecutive case series was conducted, in which retrospective and prospective collection of patient-reported outcome measure (PROM) and radiologic data were conducted.

View Article and Find Full Text PDF

The proline catabolic pathway consisting of proline dehydrogenase (PRODH) and L-glutamate-γ-semialdehyde (GSAL) dehydrogenase (GSALDH) catalyzes the four-electron oxidation of L-proline to L-glutamate. Chemical probes to these enzymes are of interest for their role in cancer and inherited metabolic disease. Here, we report the results of a crystallographic fragment-screening campaign targeting both enzymes.

View Article and Find Full Text PDF

The flavoenzyme proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the oxidation of l-proline to Δ-pyrroline-5-carboxylate. The enzyme is a target for chemical probe discovery because of its role in the metabolism of certain cancer cells. -propargylglycine is the first and best characterized mechanism-based covalent inactivator of PRODH.

View Article and Find Full Text PDF

Δ-pyrroline-5-carboxylate reductase isoform 1 (PYCR1) is the last enzyme of proline biosynthesis and catalyzes the NAD(P)H-dependent reduction of Δ-pyrroline-5-carboxylate to L-proline. High PYCR1 gene expression is observed in many cancers and linked to poor patient outcomes and tumor aggressiveness. The knockdown of the PYCR1 gene or the inhibition of PYCR1 enzyme has been shown to inhibit tumorigenesis in cancer cells and animal models of cancer, motivating inhibitor discovery.

View Article and Find Full Text PDF

Aldehyde dehydrogenase 7A1 (ALDH7A1) catalyzes a step of lysine catabolism. Certain missense mutations in the ALDH7A1 gene cause pyridoxine dependent epilepsy (PDE), a rare autosomal neurometabolic disorder with recessive inheritance that affects almost 1:65,000 live births and is classically characterized by recurrent seizures from the neonatal period. We report a biochemical, structural, and computational study of two novel ALDH7A1 missense mutations that were identified in a child with rare recurrent seizures from the third month of life.

View Article and Find Full Text PDF

The proline biosynthetic enzyme Δ-pyrroline-5-carboxylate (P5C) reductase 1 (PYCR1) is one of the most consistently upregulated enzymes across multiple cancer types and central to the metabolic rewiring of cancer cells. Herein, we describe a fragment-based, structure-first approach to the discovery of PYCR1 inhibitors. Thirty-seven fragment-like carboxylic acids in the molecular weight range of 143-289 Da were selected from docking and then screened using X-ray crystallography as the primary assay.

View Article and Find Full Text PDF

Two amino acid variants in soybean serine hydroxymethyltransferase 8 (SHMT8) are associated with resistance to the soybean cyst nematode (SCN), a devastating agricultural pathogen with worldwide economic impacts on soybean production. SHMT8 is a cytoplasmic enzyme that catalyzes the pyridoxal 5-phosphate-dependent conversion of serine and tetrahydrofolate (THF) to glycine and 5,10-methylenetetrahydrofolate. A previous study of the P130R/N358Y double variant of SHMT8, identified in the SCN-resistant soybean cultivar (cv.

View Article and Find Full Text PDF

The crystal structure of the domain of unknown function family 507 protein from Aquifex aeolicus is reported (AaDUF507, UniProt O67633, 183 residues). The structure was determined in two space groups (C222 and P321) at 1.9 Å resolution.

View Article and Find Full Text PDF

Pyrroline-5-carboxylate reductase (PYCR) is a proline biosynthetic enzyme that catalyzes the NAD(P)H-dependent reduction of Δ-pyrroline-5-carboxylate (P5C) to proline. Humans have three PYCR isoforms, with PYCR1 often upregulated in different types of cancers. Here, we studied the biochemical and structural properties of the Thr171Met variant of PYCR1, which is found in patients with malignant melanoma and lung adenocarcinoma.

View Article and Find Full Text PDF

Proline dehydrogenase (PRODH) catalyzes the FAD-dependent oxidation of l-proline to Δ1-pyrroline-5-carboxylate and is a target for inhibitor discovery because of its importance in cancer cell metabolism. Because human PRODH is challenging to purify, the PRODH domains of the bacterial bifunctional enzyme proline utilization A (PutA) have been used for inhibitor development. These systems have limitations due to large polypeptide chain length, conformational flexibility and the presence of domains unrelated to PRODH activity.

View Article and Find Full Text PDF

PYCRs are proline biosynthetic enzymes that catalyze the NAD(P)H-dependent reduction of Δ-pyrroline-5-carboxylate (P5C) to proline in humans. PYCRs - especially PYCR1 - are upregulated in many types of cancers and have been implicated in the altered metabolism of cancer cells. Of the three isoforms of PYCR, PYCR3 remains the least studied due in part to the lack of a robust recombinant expression.

View Article and Find Full Text PDF

is a Gram-negative opportunistic pathogen that causes nosocomial infections, especially among immunocompromised individuals. The rise of multidrug resistant strains of has limited the use of standard antibiotics, highlighting a need for new drugs that exploit novel mechanisms of pathogenicity. Disrupting iron acquisition by inhibiting the biosynthesis of iron-chelating molecules (siderophores) secreted by the pathogen is a potential strategy for developing new antibiotics.

View Article and Find Full Text PDF

Pyridone adenine dinucleotides (ox-NADs) are redox inactive derivatives of the enzyme cofactor and substrate nicotinamide adenine dinucleotide (NAD) that have a carbonyl group at the C2, C4, or C6 positions of the nicotinamide ring. These aberrant cofactor analogs accumulate in cells under stress and are potential inhibitors of enzymes that use NAD(H). We studied the conformational landscape of ox-NADs in solution using molecular dynamics simulations.

View Article and Find Full Text PDF
Article Synopsis
  • * The G358S mutation in PfATP4 enables parasites to tolerate higher concentrations of these inhibitors while remaining susceptible to other antimalarials not targeting PfATP4.
  • * Results indicate that PfATP4 mutations decrease drug sensitivity but do not affect parasite growth or spread, suggesting the need for testing inhibitor combinations to counteract potential resistance.
View Article and Find Full Text PDF

Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the FAD-dependent oxidation of L-proline to Δ-pyrroline-5-carboxylate. PRODH plays a central role in the metabolic rewiring of cancer cells, which has motivated the discovery of inhibitors. Here, we studied the inhibition of PRODH by 18 proline-like compounds to understand the structural and chemical features responsible for the affinity of the best-known inhibitor, -(-)-tetrahydro-2-furoic acid (1).

View Article and Find Full Text PDF

New drug production, from target identification to marketing approval, takes over 12 years and can cost around $2.6 billion. Furthermore, the COVID-19 pandemic has unveiled the urgent need for more powerful computational methods for drug discovery.

View Article and Find Full Text PDF

L-Thioproline (L-thiazolidine-4-carboxylate, L-T4C) is a cyclic sulfur-containing analog of L-proline found in multiple kingdoms of life. The oxidation of L-T4C leads to L-cysteine formation in bacteria, plants, mammals, and protozoa. The conversion of L-T4C to L-Cys in bacterial cell lysates has been attributed to proline dehydrogenase and L-Δ-pyrroline-5-carboxylate (P5C) reductase (PYCR) enzymes but detailed kinetic studies have not been conducted.

View Article and Find Full Text PDF

Thiazolidine carboxylates such as thiazolidine-4-carboxylate (T4C) and thiazolidine-2-carboxylate (T2C) are naturally occurring sulfur analogues of proline. These compounds have been observed to have both beneficial and toxic effects in cells. Given that proline dehydrogenase has been proposed to be a key enzyme in the oxidative metabolism of thioprolines, we characterized T4C and T2C as substrates of proline catabolic enzymes using proline utilization A (PutA), which is a bifunctional enzyme with proline dehydrogenase (PRODH) and l-glutamate-γ-semialdehyde dehydrogenase (GSALDH) activities.

View Article and Find Full Text PDF

Influenza virus is a highly contagious virus that causes significant human mortality and morbidity annually. The most effective drugs for treating influenza are the neuraminidase inhibitors, but resistance to these inhibitors has emerged, and additional drug discovery research on neuraminidase and other targets is needed. Traditional methods of neuraminidase production from embryonated eggs are cumbersome, while insect cell derived protein is less reflective of neuraminidase produced during human infection.

View Article and Find Full Text PDF

Proline dehydrogenase (PRODH) is a flavoenzyme that catalyzes the first step of proline catabolism, the oxidation of l-proline to Δ-pyrroline-5-carboxylate. PRODH has emerged as a cancer therapy target because of its involvement in the metabolic reprogramming of cancer cells. Here, we report the discovery of a new class of PRODH inactivator, which covalently and irreversibly modifies the FAD in a light-dependent manner.

View Article and Find Full Text PDF

In many bacteria, the reactions of proline catabolism are catalyzed by the bifunctional enzyme known as proline utilization A (PutA). PutA catalyzes the two-step oxidation of l-proline to l-glutamate using distinct proline dehydrogenase (PRODH) and l-glutamate-γ-semialdehyde dehydrogenase (GSALDH) active sites, which are separated by over 40 Å and connected by a complex tunnel system. The tunnel system consists of a main tunnel that connects the two active sites and functions in substrate channeling, plus six ancillary tunnels whose functions are unknown.

View Article and Find Full Text PDF

is an opportunistic pathogen with a high mortality rate due to multi-drug-resistant strains. The synthesis and uptake of the iron-chelating siderophores acinetobactin (Acb) and preacinetobactin (pre-Acb) have been shown to be essential for virulence. Here, we report the kinetic and structural characterization of BauF, a flavin-dependent siderophore-interacting protein (SIP) required for the reduction of Fe(III) bound to Acb/pre-Acb and release of Fe(II).

View Article and Find Full Text PDF