Publications by authors named "John T Pena"

The characterization of post-transcriptional gene regulation by small regulatory (20-30 nt) RNAs, particularly miRNAs and piRNAs, has become a major focus of research in recent years. A prerequisite for characterizing small RNAs is their identification and quantification across different developmental stages, and in normal and disease tissues, as well as model cell lines. Here we present a step-by-step protocol for generating barcoded small RNA cDNA libraries compatible with Illumina HiSeq sequencing, thereby facilitating miRNA and other small RNA profiling of large sample collections.

View Article and Find Full Text PDF

Background: Myocardial infarction leads to cardiac remodeling and development of heart failure. Insufficient myocardial capillary density after myocardial infarction has been identified as a critical event in this process, although the underlying mechanisms of cardiac angiogenesis are mechanistically not well understood.

Methods And Results: Here, we show that the small noncoding RNA microRNA-24 (miR-24) is enriched in cardiac endothelial cells and considerably upregulated after cardiac ischemia.

View Article and Find Full Text PDF

Sequencing of small RNA cDNA libraries is an important tool for the discovery of new RNAs and the analysis of their mutational status as well as expression changes across samples. It requires multiple enzyme-catalyzed steps, including sequential oligonucleotide adapter ligations to the 3' and 5' ends of the small RNAs, reverse transcription (RT), and PCR. We assessed biases in representation of miRNAs relative to their input concentration, using a pool of 770 synthetic miRNAs and 45 calibrator oligoribonucleotides, and tested the influence of Rnl1 and two variants of Rnl2, Rnl2(1-249) and Rnl2(1-249)K227Q, for 3'-adapter ligation.

View Article and Find Full Text PDF

Regulation of microRNA (miRNA) expression and function in the context of activity-dependent synaptic plasticity in the adult brain is little understood. Here, we examined miRNA expression during long-term potentiation (LTP) in the dentate gyrus of adult anesthetized rats. Microarray expression profiling identified a subpopulation of regulated mature miRNAs 2 h after the induction of LTP by high-frequency stimulation (HFS) of the medial perforant pathway.

View Article and Find Full Text PDF

MicroRNAs are small regulatory RNAs with many biological functions and disease associations. We showed that in situ hybridization (ISH) using conventional formaldehyde fixation results in substantial microRNA loss from mouse tissue sections, which can be prevented by fixation with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide that irreversibly immobilizes the microRNA at its 5' phosphate. We determined optimal hybridization parameters for 130 locked nucleic acid probes by recording nucleic acid melting temperature during ISH.

View Article and Find Full Text PDF

MicroRNAs comprise a broad class of small non-coding RNAs that control expression of complementary target messenger RNAs. Dysregulation of microRNAs by several mechanisms has been described in various disease states including cardiac disease. Whereas previous studies of cardiac disease have focused on microRNAs that are primarily expressed in cardiomyocytes, the role of microRNAs expressed in other cell types of the heart is unclear.

View Article and Find Full Text PDF

Vasoactive intestinal peptide (VIP) is a secretagogue that mediates chloride secretion in intestinal epithelia. We determined the relative potency of VIP and related peptides in the rectal gland of the elasmobranch dogfish shark and cloned and expressed the VIP receptor (sVIP-R) from this species. In the perfused rectal gland, VIP (5 nM) stimulated chloride secretion from 250 +/- 66 to 2,604 +/- 286 microeq x h(-1) x g(-1); the relative potency of peptide agonists was VIP > PHI = GHRH > PACAP > secretin, where PHI is peptide histidine isoleucine amide, GHRH is growth hormone-releasing hormone, and PACAP is pituitary adenylate cylase activating peptide.

View Article and Find Full Text PDF

n-Propyl gallate (nPG) is a food preservative that is generally regarded as safe by the US FDA. It suppresses oxidation in biological systems. The mechanism by which nPG acts in biological systems is uncertain.

View Article and Find Full Text PDF