Publications by authors named "John T Gaskins"

Post deposition annealing of molecular layer-deposited (MLD) hafnicone films was examined and compared to that of hafnium oxide atomic layer-deposited (ALD) films. Hafnicone films were deposited using tetrakis(dimethylamido)hafnium (TDMAH), and ethylene glycol and hafnia films were deposited using TDMAH and water at 120 °C. The changes in the properties of the as-deposited hafnicone films with annealing were probed by various techniques and then compared to the as-deposited and annealed ALD hafnia films.

View Article and Find Full Text PDF

We measure the thermal conductivity of solid and molten tungsten using steady state temperature differential radiometry. We demonstrate that the thermal conductivity can be well described by application of Wiedemann-Franz law to electrical resistivity data, thus suggesting the validity of Wiedemann-Franz law to capture the electronic thermal conductivity of metals in their molten phase. We further support this conclusion using ab initio molecular dynamics simulations with a machine-learned potential.

View Article and Find Full Text PDF

We experimentally and theoretically investigate the thermal conductivity and mechanical properties of polycrystalline HKUST-1 metal-organic frameworks (MOFs) infiltrated with three guest molecules: tetracyanoquinodimethane (TCNQ), 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F-TCNQ), and (cyclohexane-1,4-diylidene)dimalononitrile (H-TCNQ). This allows for modification of the interaction strength between the guest and host, presenting an opportunity to study the fundamental atomic scale mechanisms of how guest molecules impact the thermal conductivity of large unit cell porous crystals. The thermal conductivities of the guest@MOF systems decrease significantly, by on average a factor of 4, for all infiltrated samples as compared to the uninfiltrated, pristine HKUST-1.

View Article and Find Full Text PDF

Measuring the thermal conductivity of sub-surface buried substrates is of significant practical interests. However, this remains challenging with traditional pump-probe spectroscopies due to their limited thermal penetration depths. Here, we experimentally and numerically investigate the TPD of the recently developed optical pump-probe technique steady-state thermoreflectance (SSTR) and explore its capability for measuring the thermal properties of buried substrates.

View Article and Find Full Text PDF

Amorphous chalcogenide alloys are key materials for data storage and energy scavenging applications due to their large non-linearities in optical and electrical properties as well as low vibrational thermal conductivities. Here, we report on a mechanism to suppress the thermal transport in a representative amorphous chalcogenide system, silicon telluride (SiTe), by nearly an order of magnitude via systematically tailoring the cross-linking network among the atoms. As such, we experimentally demonstrate that in fully dense amorphous SiTe the thermal conductivity can be reduced to as low as 0.

View Article and Find Full Text PDF

High thermal conductivity materials show promise for thermal mitigation and heat removal in devices. However, shrinking the length scales of these materials often leads to significant reductions in thermal conductivities, thus invalidating their applicability to functional devices. In this work, we report on high in-plane thermal conductivities of 3.

View Article and Find Full Text PDF

We experimentally show that the thermal conductance across confined solid-solution crystalline thin films between parent materials does not necessarily lead to an increase in thermal resistances across the thin-film geometries with increasing film thicknesses, which is counterintuitive to the notion that adding a material serves to increase the total thermal resistance. Confined thin epitaxial CaSrTiO solid-solution films with systematically varying thicknesses in between two parent perovskite materials of calcium titanate and (001)-oriented strontium titanate are grown, and thermoreflectance techniques are used to accurately measure the thermal boundary conductance across the confined solid-solution films, showing that the thermal resistance does not substantially increase with the addition of solid-solution films with increasing thicknesses from ∼1 to ∼10 nm. Contrary to the macroscopic understanding of thermal transport where adding more material along the heat propagation direction leads to larger thermal resistances, our results potentially offer experimental support to the computationally predicted concept of vibrational matching across interfaces.

View Article and Find Full Text PDF

Phase change memory (PCM) is a rapidly growing technology that not only offers advancements in storage-class memories but also enables in-memory data processing to overcome the von Neumann bottleneck. In PCMs, data storage is driven by thermal excitation. However, there is limited research regarding PCM thermal properties at length scales close to the memory cell dimensions.

View Article and Find Full Text PDF

Aluminum nitride (AlN) has garnered much attention due to its intrinsically high thermal conductivity. However, engineering thin films of AlN with these high thermal conductivities can be challenging due to vacancies and defects that can form during the synthesis. In this work, we report on the cross-plane thermal conductivity of ultra-high-purity single-crystal AlN films with different thicknesses (∼3-22 μm) via time-domain thermoreflectance (TDTR) and steady-state thermoreflectance (SSTR) from 80 to 500 K.

View Article and Find Full Text PDF

We demonstrate a steady-state thermoreflectance-based optical pump-probe technique to measure the thermal conductivity of materials using a continuous wave laser heat source. The technique works in principle by inducing a steady-state temperature rise in a material via long enough exposure to heating from a pump laser. A probe beam is then used to detect the resulting change in reflectance, which is proportional to the change in temperature at the sample surface.

View Article and Find Full Text PDF

Understanding the effects and limitations of solid/liquid interfaces on energy transport is crucial to applications ranging from nanoscale thermal engineering to chemical synthesis. Until now, the majority of experimental evidence regarding solid/liquid interactions has been limited to macroscale observations and experiments. The lack of experimental works exploring nanoscale solid/liquid interactions has been accentuated as the body of knowledge from theory and simulations at these scales has exploded in recent years.

View Article and Find Full Text PDF

Carbon based materials have attracted much attention as building blocks in technologically relevant nanocomposites due to their unique chemical and physical properties. Here, we propose a new class of hierarchical carbon based nano-truss structures consisting of fullerene joints attached with carbon nanotubes as the truss forming a three-dimensional network. Atomistic molecular dynamics simulations allow us to systematically demonstrate the ability to simultaneously control the mechanical and thermal properties of these structures, elucidating their unique physical properties.

View Article and Find Full Text PDF

We present experimental measurements of the thermal boundary conductance (TBC) from 78-500 K across isolated heteroepitaxially grown ZnO films on GaN substrates. This data provides an assessment of the underlying assumptions driving phonon gas-based models, such as the diffuse mismatch model (DMM), and atomistic Green's function (AGF) formalisms used to predict TBC. Our measurements, when compared to previous experimental data, suggest that TBC can be influenced by long wavelength, zone center modes in a material on one side of the interface as opposed to the '"vibrational mismatch"' concept assumed in the DMM; this disagreement is pronounced at high temperatures.

View Article and Find Full Text PDF

The role of interfacial nonidealities and disorder on thermal transport across interfaces is traditionally assumed to add resistance to heat transfer, decreasing the thermal boundary conductance (TBC). However, recent computational studies have suggested that interfacial defects can enhance this thermal boundary conductance through the emergence of unique vibrational modes intrinsic to the material interface and defect atoms, a finding that contradicts traditional theory and conventional understanding. By manipulating the local heat flux of atomic vibrations that comprise these interfacial modes, in principle, the TBC can be increased.

View Article and Find Full Text PDF

Ferroelastic domain walls in ferroelectric materials possess two properties that are known to affect phonon transport: a change in crystallographic orientation and a lattice strain. Changing populations and spacing of nanoscale-spaced ferroelastic domain walls lead to the manipulation of phonon-scattering rates, enabling the control of thermal conduction at ambient temperatures. In the present work, lead zirconate titanate (PZT) thin-film membrane structures were fabricated to reduce mechanical clamping to the substrate and enable a subsequent increase in the ferroelastic domain wall mobility.

View Article and Find Full Text PDF

Damage in the form of dewetting and delamination of thin films is a major concern in applications requiring micro- or nano-fabrication. In non-contact nanoscale characterization, optical interrogation must be kept to energies below damage thresholds in order to conduct measurements such as pump-probe spectroscopy. In this study, we show that the thermoreflectance of thin films can indicate the degree of film damage induced by a modulated optical heating source.

View Article and Find Full Text PDF

Here, we show how the mechanical properties of a thick-shelled tropical seed are adapted to permit them to germinate while preventing their predation. The seed has evolved a complex heterogeneous microstructure resulting in hardness, stiffness and fracture toughness values that place the structure at the intersection of these competing selective constraints. Analyses of different damage mechanisms inflicted by beetles, squirrels and orangutans illustrate that cellular shapes and orientations ensure damage resistance to predation forces imposed across a broad range of length scales.

View Article and Find Full Text PDF