Publications by authors named "John T Favreau"

Differentiation of human pluripotent stem cells into cardiomyocytes (hPS-CMs) holds promise for myocardial regeneration therapies, drug discovery, and models of cardiac disease. Potential cardiotoxicities may affect hPS-CM mechanical contraction independent of calcium signaling. Herein, a method using an image capture system is described to measure hPS-CM contractility and intracellular calcium concurrently, with high spatial and temporal resolution.

View Article and Find Full Text PDF

Stem cell therapy has the potential to improve cardiac function after myocardial infarction (MI); however, existing methods to deliver cells to the myocardium, including intramyocardial injection, suffer from low engraftment rates. In this study, we used a rat model of acute MI to assess the effects of human mesenchymal stem cell (hMSC)-seeded fibrin biological sutures on cardiac function at 1 week after implant. Biological sutures were seeded with quantum dot (Qdot)-loaded hMSCs for 24 h before implantation.

View Article and Find Full Text PDF

Current cardiac cell therapies cannot effectively target and retain cells in a specific area of the heart. Cell-seeded biological sutures were previously developed to overcome this limitation, demonstrating targeted delivery with > 60% cell retention. In this study, both cell-seeded and non-seeded fibrin-based biological sutures were implanted into normal functioning rat hearts to determine the effects on mechanical function and fibrotic response.

View Article and Find Full Text PDF

Objective: Intimal hyperplasia (IH) continues to plague the durability of vascular interventions. Employing a validated murine model, ultrasound biomicroscopy, and speckle-tracking algorithms, we tested the hypothesis that reduced cyclic arterial wall strain results in accentuated arterial wall IH.

Methods: A 9-0 suture was tied around the left mouse (n = 10) common carotid artery and a 35-gauge (outer diameter = 0.

View Article and Find Full Text PDF

Murine models offer a powerful tool for unraveling the mechanisms of intimal hyperplasia and vascular remodeling, although their technical complexity increases experimental variability and limits widespread application. We describe a simple and clinically relevant mouse model of arterial intimal hyperplasia and remodeling. Focal left carotid artery (LCA) stenosis was created by placing 9-0 nylon suture around the artery using an external 35-gauge mandrel needle (middle or distal location), which was then removed.

View Article and Find Full Text PDF

Airway smooth muscle (ASM) cellular and molecular biology is typically studied with single-cell cultures grown on flat 2D substrates. However, cells in vivo exist as part of complex 3D structures, and it is well established in other cell types that altering substrate geometry exerts potent effects on phenotype and function. These factors may be especially relevant to asthma, a disease characterized by structural remodeling of the airway wall, and highlights a need for more physiologically relevant models of ASM function.

View Article and Find Full Text PDF

Objective: The underlying causes of abdominal aortic aneurysms (AAAs) remain obscure, although research tools such as the angiotensin II (Ang II) apolipoprotein E-deficient (apoE(-/-)) mouse model have aided investigations. Longitudinal imaging and determination of biomechanical forces in this small-scale model have been difficult. We hypothesized that high-frequency ultrasound biomicroscopy combined with speckle-tracking analytical strategies can be used to define the role of circumferential mechanical strain in AAA formation in the Ang II/apoE(-/-) mouse model of AAAs.

View Article and Find Full Text PDF