Inteins are phylogenetically diverse self-splicing proteins that are of great functional, evolutionary, biotechnological, and medical interest. To address the relationship between intein structure and function, particularly with respect to regulating the splicing reaction, and to groom inteins for application, we developed a phage display system to extend current in vivo selection for enhanced intein function to selection in vitro. We thereby isolated inteins that can function under excursions in temperature, pH, and denaturing environment.
View Article and Find Full Text PDFI-TevI is a modular intron-encoded endonuclease, consisting of an N-terminal catalytic domain and a C-terminal DNA-binding domain, joined by a 75 amino acid linker. This linker can be divided into three regions, starting at the N terminus: the deletion-intolerant (DI) region; the deletion-tolerant (DT) region; and a zinc finger, which acts as a distance determinant for cleavage. To further explore linker function, we generated deletion and substitution mutants that were tested for their preference to cleave at a particular distance or at the correct sequence.
View Article and Find Full Text PDFHoming endonucleases are unusual enzymes, capable of recognizing lengthy DNA sequences and cleaving site-specifically within genomes. Many homing endonucleases are encoded within group I introns, and such enzymes promote the mobility reactions of these introns. Phage T4 has three group I introns, within the td, nrdB and nrdD genes.
View Article and Find Full Text PDFMany naturally occurring inteins consist of two functionally independent domains, a protein-splicing domain and an endonuclease domain. In a previous study, a 168 amino acid residue mini-intein was generated by removal of the central endonuclease domain of the 440 residue Mycobacterium tuberculosis (Mtu) recA intein. In addition, directed evolution experiments identified a mutation, V67L, that improved the activity of the mini-intein significantly.
View Article and Find Full Text PDFI-TevI, the phage T4 td intron-encoded endonuclease, recognizes a lengthy DNA target and initiates intron mobility by introducing a double-strand break in the homing site. The enzyme uses both sequence and distance determinants to cleave the DNA 23-25 bp upstream of the intron insertion site. I-TevI consists of an N-terminal catalytic domain and a C-terminal DNA-binding domain separated by a long, flexible linker.
View Article and Find Full Text PDF