AbstractSensory feedback plays an essential role in shaping rhythmic animal movements. In the crustacean stomatogastric nervous system, which is responsible for grinding and filtering food particles in the animal's foregut, a number of mechanoreceptors whose activity affects motor output have been characterized. The hepatopancreas duct receptor neurons, which are located in the pyloric region of the foregut that is responsible for filtering, are among the less well understood groups of stomatogastric mechanoreceptors.
View Article and Find Full Text PDFNeuromodulatory actions that change the properties of proprioceptors or the muscle movements to which they respond necessarily affect the feedback provided to the central network. Here we further characterize the responses of the gastropyloric receptor 1 (GPR1) and gastropyloric receptor 2 (GPR2) neurons in the stomatogastric nervous system of the crab to movements and contractions of muscles, and we report how neuromodulation modifies those responses. We observed that the GPR1 response to contractions of the gastric mill 4 muscle (gm4) was absent, or nearly so, when the neuron was quiescent but robust when it was spontaneously active.
View Article and Find Full Text PDFFor a slowly varying stimulus, the simplest relationship between a neuron's input and output is a rate code, in which the spike rate is a unique function of the stimulus at that instant. In the case of spike-rate adaptation, there is no unique relationship between input and output, because the spike rate at any time depends both on the instantaneous stimulus and on prior spiking (the "history"). To improve the decoding of spike trains produced by neurons that show spike-rate adaptation, we developed a simple scheme that incorporates "history" into a rate code.
View Article and Find Full Text PDFThe temporal precision of a neuron's spiking can be characterized by calculating its "jitter," defined as the standard deviation of the timing of individual spikes in response to repeated presentations of a stimulus. Sub-millisecond jitters have been measured for neurons in a variety of experimental systems and appear to be functionally important in some instances. We have investigated how modifying a neuron's maximal conductances affects jitter using the leaky integrate-and-fire (LIF) model and an eight-conductance Hodgkin-Huxley type (HH8) model.
View Article and Find Full Text PDFWe have developed a machine vision-based method for automatically tracking deformations in the body wall to monitor ecdysis behaviors in the hornworm, Manduca sexta. The method utilizes naturally occurring features on the animal's body (spiracles) and is highly accurate (>95 % success in tracking). Moreover, it is robust to unanticipated changes in the animal's position and in lighting, and in the event tracking of specific features is lost, tracking can be reestablished within a few cycles without input from the user.
View Article and Find Full Text PDFGamma-aminobutyric acid (GABA) is best known as an inhibitory neurotransmitter in the mammalian central nervous system. Here we show, however, that GABA has an excitatory effect on nerve-evoked contractions and on excitatory junctional potentials (EJPs) of the gastric mill 4 (gm4) muscle from the stomach of the crab Cancer borealis. The threshold concentration for these effects was between 1 and 10 micromol l(-1).
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
October 2008
Stomatogastric musculature from crabs in the genus Cancer provides a system in which modulatory roles of peptides from the FLRFamide family can be compared. The anterior cardiac plexus (ACP) is a neuroendocrine release site within the Cancer stomatogastric nervous system that is structurally identical in C. borealis, C.
View Article and Find Full Text PDFThe neuropeptide allatostatin decreases the spike rate in response to time-varying stretches of two different crustacean mechanoreceptors, the gastropyloric receptor 2 in the crab Cancer borealis and the coxobasal chordotonal organ (CBCTO) in the crab Carcinus maenas. In each system, the decrease in firing rate is accompanied by an increase in the timing precision of spikes triggered by discrete temporal features in the stimulus. This was quantified by calculating the standard deviation or "jitter" in the times of individual identified spikes elicited in response to repeated presentations of the stimulus.
View Article and Find Full Text PDFBoth vertebrate and invertebrate motor neurons can display bistable behavior in which self-sustained tonic firing results from a brief excitatory stimulus. Induction of the bistability is usually dependent on activation of intrinsic conductances located in the somatodendritic area and is commonly sensitive to action of neuromodulators. We have observed bistable behavior in a neuromuscular preparation from the foregut of the crab Cancer borealis that consists of the gastric mill 4 (gm4) muscle and the nerve that innervates it, the dorsal gastric nerve (dgn).
View Article and Find Full Text PDFA club-shaped, tachykinin-immunopositive structure first described nearly two decades ago in the commissural ganglion (CoG) of three species of decapod crustaceans has remained enigmatic, as its function is unknown. Here, we use a combination of anatomical, mass spectrometric and electrophysiological techniques to address this issue in the crab Cancer productus. Immunohistochemistry using an antibody to the vertebrate tachykinin substance P shows that a homologous site exists in each CoG of this crab.
View Article and Find Full Text PDFThe recent development of techniques for stimulating and recording from individual neurons grown on semiconductor chips has ushered in a new era in the field of neuroelectronics. Using this approach to construct complex neural circuits on silicon from individual neurons will require improvements at the neuron/semiconductor interface and advances in controlling synaptogenesis. Although devices incorporating vertebrate neurons may be an ultimate goal, initial investigations using neurons from the pond snail Lymnaea stagnalis have distinct advantages.
View Article and Find Full Text PDFNeuromodulation may enhance the ability of sensory circuits to respond appropriately to widely variable environmental stimuli. The functional significance of neuromodulation will emerge from understanding the effects of modulators not just on single cells and synapses, but also on networks and the behavior of intact animals. With their relatively simple circuitry and large identifiable cells, invertebrate nervous systems offer insights into the complex roles of neuromodulators in modifying networks to meet the changing needs of the animal.
View Article and Find Full Text PDFNeuromodulators can modify the magnitude and kinetics of the response of a sensory neuron to a stimulus. Six neuroactive substances modified the activity of the gastropyloric receptor 2 (GPR2) neuron of the stomatogastric nervous system (STNS) of the crab Cancer borealis during muscle stretch. Stretches were applied to the gastric mill 9 (gm9) and the cardio-pyloric valve 3a (cpv3a) muscles.
View Article and Find Full Text PDF