The role of scavenger receptor class B, type I (SR-BI) in endothelial cells (EC) was examined in several novel transgenic mouse models expressing SR-BI in endothelium of mice with normal C57Bl6/N, apoE-KO, or Scarb1-KO backgrounds. Mice were also created expressing SR-BI exclusively in endothelium and liver. Endothelial expression of the Tie2-Scarb1 transgene had no significant effect on plasma lipoprotein levels in mice on a normal chow diet but on an atherogenic diet, significantly decreased plasma cholesterol levels, increased plasma HDL cholesterol (HDL-C) levels, and protected mice against atherosclerosis.
View Article and Find Full Text PDFThe goal of this study was to understand how the reconstituted HDL (rHDL) phospholipid (PL) composition affects its cholesterol efflux and anti-inflammatory properties. An ApoA-I mimetic peptide, 5A, was combined with either SM or POPC. Both lipid formulations exhibited similar in vitro cholesterol efflux by ABCA1, but 5A-SM exhibited higher ABCG1- and SR-BI-mediated efflux relative to 5A-POPC (P < 0.
View Article and Find Full Text PDFLCAT, a plasma enzyme that esterifies cholesterol, has been proposed to play an antiatherogenic role, but animal and epidemiologic studies have yielded conflicting results. To gain insight into LCAT and the role of free cholesterol (FC) in atherosclerosis, we examined the effect of LCAT over- and underexpression in diet-induced atherosclerosis in scavenger receptor class B member I-deficient [Scarab(-/-)] mice, which have a secondary defect in cholesterol esterification. Scarab(-/-)×LCAT-null [Lcat(-/-)] mice had a decrease in HDL-cholesterol and a high plasma ratio of FC/total cholesterol (TC) (0.
View Article and Find Full Text PDFWe have previously shown that GFP-tagged human ABCG1 on the plasma membrane (PM) and in late endosomes (LE) mobilizes sterol on both sides of the membrane lipid bilayer, thereby increasing cellular cholesterol efflux to lipid surfaces. In the present study, we examined ABCG1-induced changes in membrane cholesterol distribution, organization, and mobility. ABCG1-GFP expression increased the amount of mobile, non-sphingomyelin(SM)-associated cholesterol at the PM and LE, but not the amount of SM-associated-cholesterol or SM.
View Article and Find Full Text PDFWe have developed a suitable heterologous cell expression system to study the localization, trafficking, and site(s) of function of the human ABCG1 transporter. Increased plasma membrane (PM) and late endosomal (LE) cholesterol generated by ABCG1 was removed by lipoproteins and liposomes, but not apoA-I. Delivery of ABCG1 to the PM and LE was required for ABCG1-mediated cellular cholesterol efflux.
View Article and Find Full Text PDFThe bihelical apolipoprotein mimetic peptide 5A effluxes cholesterol from cells and reduces inflammation and atherosclerosis in animal models. We investigated how hydrophobic residues in the hinge region between the two helices are important in the structure and function of this peptide. By simulated annealing analysis and molecular dynamics modeling, two hydrophobic amino acids, F-18 and W-21, in the hinge region were predicted to be relatively surface-exposed and to interact with the aqueous solvent.
View Article and Find Full Text PDFDiet-induced weight loss in women may be associated with decreases not only in plasma levels of low-density lipoprotein cholesterol (LDL-C), but also in high-density lipoprotein cholesterol (HDL-C). Whether a decrease in HDL-C is associated with altered HDL function is unknown. One hundred overweight or obese women (age 46 ± 11 years, 60 black; 12 diabetic) were enrolled in the 6-month program of reduced fat and total energy diet and low-intensity exercise.
View Article and Find Full Text PDFThe role of endothelial ABCA1 expression in reverse cholesterol transport (RCT) was examined in transgenic mice, using the endothelial-specific Tie2 promoter. Human ABCA1 (hABCA1) was significantly expressed in endothelial cells (EC) of most tissues except the liver. Increased expression of ABCA1 was not observed in resident peritoneal macrophages.
View Article and Find Full Text PDFAndrogen deprivation therapy for prostate cancer leads to a significant increase of high-density lipoprotein (HDL), which is generally viewed as beneficial, particularly for cardiovascular disease, but the effect of HDL on prostate cancer is unknown. In this study, we investigated the effect of HDL on prostate cancer cell proliferation, migration, intracellular cholesterol levels, and the role of cholesterol transporters, namely ABCA1, ABCG1, and SR-BI in these processes. HDL induced cell proliferation and migration of the androgen-independent PC-3 and DU145 cells by a mechanism involving extracellular signal-regulated kinase (ERK) 1/2 and Akt, but had no effect on the androgen-dependent LNCaP cell, which did not express ABCA1 unlike the other cell lines.
View Article and Find Full Text PDFLecithin cholesterol acyl transferase (LCAT) deficiency is associated with low high-density lipoprotein (HDL) and the presence of an abnormal lipoprotein called lipoprotein X (Lp-X) that contributes to end-stage renal disease. We examined the possibility of using LCAT an as enzyme replacement therapy agent by testing the infusion of human recombinant (r)LCAT into several mouse models of LCAT deficiency. Infusion of plasma from human LCAT transgenic mice into LCAT-knockout (KO) mice rapidly increased HDL-cholesterol (C) and lowered cholesterol in fractions containing very-low-density lipoprotein (VLDL) and Lp-X.
View Article and Find Full Text PDFRationale: Apolipoprotein (apoA)-I mimetic peptides are a promising type of anti-atherosclerosis therapy, but how the structural features of these peptides relate to the multiple antiatherogenic functions of HDL is poorly understood.
Objective: To establish structure/function relationships of apoA-I mimetic peptides with their antiatherogenic functions.
Methods And Results: Twenty-two bihelical apoA-I mimetic peptides were investigated in vitro for the capacity and specificity of cholesterol efflux, inhibition of inflammatory response of monocytes and endothelial cells, and inhibition of low-density lipoprotein (LDL) oxidation.
Intravenous administration of apolipoprotein (apo) A-I complexed with phospholipid has been shown to rapidly reduce plaque size in both animal models and humans. Short synthetic amphipathic peptides can mimic the antiatherogenic properties of apoA-I and have been proposed as alternative therapeutic agents. In this study, we investigated the atheroprotective effect of the 5A peptide, a bihelical amphipathic peptide that specifically effluxes cholesterol from cells by ATP-binding cassette transporter 1 (ABCA1).
View Article and Find Full Text PDFApoA-I contains a tandem array of amphipathic helices with varying lipid affinity, which are critical in its ability to bind and remove lipids from cells by the ABCA1 transporter. In this study, the effect of asymmetry in the lipid affinity of amphipathic helices in a bihelical apoA-I mimetic peptide, 37pA, on lipid efflux by the ABCA1 transporter was examined. Seven peptide variants of 37pA were produced by substituting a varying number of hydrophobic amino acids for alanine on either one or both helices.
View Article and Find Full Text PDFApolipoprotein A-I (apoA-I) mimetic peptides may represent an alternative to apoA-I for large-scale production of synthetic high-density lipoproteins (sHDL) as a therapeutic agent. In this study, the cardioprotective activity of sHDL made with either L37pA peptide or its d-stereoisomer, D37pA, was compared to sHDL made with apoA-I. The peptides were reconstituted with palmitoyl-oleoyl-phosphatidylcholine, which yielded sHDL particles comparable to apoA-I sHDL in diameter, molecular weight, and alpha-helical content.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2004
Serum amyloid A (SAA) is an acute phase protein that associates with HDL. In order to examine the role of SAA in reverse-cholesterol transport, lipid efflux was tested to SAA from HeLa cells before and after transfection with the ABCA1 transporter. ABCA1 expression increased efflux of cholesterol and phospholipid to SAA by 3-fold and 2-fold, respectively.
View Article and Find Full Text PDFWe have previously established that the ABCA1 transporter, which plays a critical role in the lipidation of extracellular apolipoprotein acceptors, traffics between late endocytic vesicles and the cell surface (Neufeld, E. B., Remaley, A.
View Article and Find Full Text PDFThe current model for reverse cholesterol transport proposes that HDL transports excess cholesterol derived primarily from peripheral cells to the liver for removal. However, recent studies in ABCA1 transgenic mice suggest that the liver itself may be a major source of HDL cholesterol (HDL-C). To directly investigate the hepatic contribution to plasma HDL-C levels, we generated an adenovirus (rABCA1-GFP-AdV) that targets expression of mouse ABCA1-GFP in vivo to the liver.
View Article and Find Full Text PDFIn order to examine the necessary structural features for a protein to promote lipid efflux by the ABCA1 transporter, synthetic peptides were tested on ABCA1-transfected cells (ABCA1 cells) and on control cells. L-37pA, an l amino acid peptide that contains two class-A amphipathic helices linked by proline, showed a 4-fold increase in cholesterol and phospholipid efflux from ABCA1 cells compared to control cells. The same peptide synthesized with a mixture of l and d amino acids was less effective than L-37pA in solubilizing dimyristoyl phosphatidyl choline vesicles and in effluxing lipids.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2002
ABCA1 on the cell surface and in endosomes plays an essential role in the cell-mediated lipidation of apoA-I to form nascent HDL. Our previous studies of transgenic mice overexpressing ABCA1 suggested that ABCA1 in the liver plays a major role in regulating plasma HDL levels. The site of function of ABCA1 in the polarized hepatocyte was currently assessed by expression of an adenoviral construct encoding a human ABCA1-GFP fusion protein in the polarized hepatocyte-like WIF-B cell line.
View Article and Find Full Text PDFLipopolysaccharide (LPS) has recently been shown to facilitate macrophage foam cell formation and has been suggested to be a proatherogenic factor. The mechanism of LPS induced cholesterol accumulation, however, is unclear. In this report, using the macrophage-like RAW 264.
View Article and Find Full Text PDF