Publications by authors named "John Stebbins"

The integration of salivary biomeasures in biobehavioral, psychophysiological, and clinical research has greatly expanded our ability to study the biopsychosocial processes underlying health. Much of this research, however, has failed to adequately assess and adjust for the impact of oral immune activity on salivary biomeasure concentrations and associations with serum levels. Aiming to improve the validity and reliability of salivary biomeasure data, we examine salivary total Immunoglobulin G (IgG) as a potential surrogate marker of oral inflammation and immune activity.

View Article and Find Full Text PDF

Aim: Serum uric acid (UA) is associated with many health conditions, including kidney, cardiovascular, and metabolic disorders. We examined the validity and stability of salivary UA as a noninvasive measure of serum UA.

Materials & Methods: Using serum and salivary UA data from healthy adults (n = 99), we examined the UA serum-saliva correlation, and UA associations with adiponectin and C-reactive protein.

View Article and Find Full Text PDF

Magnetite (FeO) nanocrystals (MNCs) are among the most-studied magnetic nanomaterials, and many reports of solution-phase synthesis of monodisperse MNCs have been published. However, lack of reproducibility of MNC synthesis is a persistent problem, and the keys to producing monodisperse MNCs remain elusive. Here, we define and explore synthesis parameters in this system thoroughly to reveal their effects on the product MNCs.

View Article and Find Full Text PDF

This study addresses gaps in our understanding about the validity and utility of using salivary adiponectin to index serum adiponectin levels. Matched blood and saliva samples were collected on a single occasion from healthy adults (n=99; age 18-36 years, 53% male). Serum and saliva was assayed for adiponectin and inflammatory cytokines (IL-1β, IL-6, IL-8, TNFα), and saliva was also assayed for markers of blood contamination (transferrin), total protein (salivary flow rate) and matrix metalloproteinase-8 (MMP-8).

View Article and Find Full Text PDF

First line treatment for pancreatic cancer consists of surgical resection, if possible, and a subsequent course of chemotherapy using the nucleoside analogue gemcitabine. In some patients, an active transport mechanism allows gemcitabine to enter efficiently into the tumor cells, resulting in a significant clinical benefit. However, in most patients, low expression of gemcitabine transporters limits the efficacy of the drug to marginal levels, and patients need frequent administration of the drug at high doses, significantly increasing systemic drug toxicity.

View Article and Find Full Text PDF

The development of novel, targeted delivery agents for anti-cancer therapies requires the design and optimization of potent and selective tumor-targeting agents that are stable and amenable to conjugation with chemotherapeutic drugs. While short peptides represent potentially an excellent platform for these purposes, they often get degraded and are eliminated too rapidly in vivo. In this study, we used a combination of nuclear magnetic resonance-guided structure-activity relationships along with biochemical and cellular studies to derive a novel tumor-homing agent, named 123B9, targeting the EphA2 tyrosine kinase receptor ligand-binding domain.

View Article and Find Full Text PDF

Because of its overexpression in a range of solid tumors, the EphA2 receptor is a validated target for cancer therapeutics. We recently described a new targeted delivery system based on specific EphA2-targeting peptides conjugated with the chemotherapeutic agent paclitaxel. Here, we investigate the chemical determinants responsible for the stability and degradation of these agents in plasma.

View Article and Find Full Text PDF

The E3 ubiquitin ligase Siah regulates key cellular events that are central to cancer development and progression. A promising route to Siah inhibition is disrupting its interactions with adaptor proteins. However, typical of protein-protein interactions, traditional unbiased approaches to ligand discovery did not produce viable hits against this target, despite considerable effort and a multitude of approaches.

View Article and Find Full Text PDF

Purpose: YSA is an EphA2-targeting peptide that effectively delivers anticancer agents to prostate cancer tumors. Here, we report on how we increased the drug-like properties of this delivery system.

Experimental Design: By introducing non-natural amino acids, we have designed two new EphA2 targeting peptides: YNH, where norleucine and homoserine replace the two methionine residues of YSA, and dYNH, where a D-tyrosine replaces the L-tyrosine at the first position of the YNH peptide.

View Article and Find Full Text PDF

Successful replication of the influenza A virus requires both viral proteins and host cellular factors. In this study we used a cellular assay to screen for small molecules capable of interfering with any of such necessary viral or cellular components. We used an established reporter assay to assess influenza viral replication by monitoring the activity of co-expressed luciferase.

View Article and Find Full Text PDF

Structure-based modeling combined with rational drug design, and high throughput screening approaches offer significant potential for identifying and developing lead compounds with therapeutic potential. The present review focuses on these two approaches using explicit examples based on specific derivatives of Gossypol generated through rational design and applications of a cancer-specificpromoter derived from Progression Elevated Gene-3. The Gossypol derivative Sabutoclax (BI-97C1) displays potent anti-tumor activity against a diverse spectrum of human tumors.

View Article and Find Full Text PDF

Resistance to available therapeutic agents has been a common problem thwarting progress in treatment of castrate-resistant and metastatic prostate cancer (PCa). Overexpression of the Bcl-2 family members, including Mcl-1, in PCa cells is known to inhibit intracellular mitochondrial-dependent apoptosis. Here we report the development of a novel transgenic mouse model that spontaneously develops prostatic intraepithelial neoplasia and adenocarcinoma by the inducible, conditional knockout of transforming growth factor β receptor type II in stromal fibroblastic cells (Tgfbr2(ColTKO)).

View Article and Find Full Text PDF

Membrane type-1 matrix metalloproteinase (MT1-MMP) is a promising drug target in malignancy. The structure of MT1-MMP includes the hemopexin domain (PEX) that is distinct from and additional to the catalytic domain. Current MMP inhibitors target the conserved active site in the catalytic domain and, as a result, repress the proteolytic activity of multiple MMPs instead of MT1-MMP alone.

View Article and Find Full Text PDF

The efficacy of anticancer drugs is often limited by their systemic toxicities and adverse side effects. We report that the EphA2 receptor is overexpressed preferentially in several human cancer cell lines compared to normal tissues and that an EphA2 targeting peptide (YSAYPDSVPMMS) can be effective in delivering anticancer agents to such tumors. Hence, we report on the synthesis and characterizations of a novel EphA2-targeting agent conjugated with the chemotherapeutic drug paclitaxel.

View Article and Find Full Text PDF

Introduction: Human cancers are genetically and epigenetically heterogeneous and have the capacity to commandeer a variety of cellular processes to aid in their survival, growth and resistance to therapy. One strategy is to overexpress proteins that suppress apoptosis, such as the Bcl-2 family protein Mcl-1. The Mcl-1 protein plays a pivotal role in protecting cells from apoptosis and is overexpressed in a variety of human cancers.

View Article and Find Full Text PDF

c-Jun N-terminal kinases (JNKs) represent valuable targets in the development of new therapies. Present on the surface of JNK is a binding pocket for substrates and the scaffolding protein JIP1 in close proximity to the ATP binding pocket. We propose that bidentate compounds linking the binding energies of weakly interacting ATP and substrate mimetics could result in potent and selective JNK inhibitors.

View Article and Find Full Text PDF

Glutamate is an essential excitatory neurotransmitter regulating brain functions. Excitatory amino acid transporter (EAAT)-2 is one of the major glutamate transporters expressed predominantly in astroglial cells and is responsible for 90% of total glutamate uptake. Glutamate transporters tightly regulate glutamate concentration in the synaptic cleft.

View Article and Find Full Text PDF

In melanoma, the activation of pro-survival signaling pathways, such as the AKT and NF-κB pathways, is critical for tumor growth. We have recently reported that the AKT inhibitor BI-69A11 causes efficient inhibition of melanoma growth. Here, we show that in addition to its AKT inhibitory activity, BI-69A11 also targets the NF-κB pathway.

View Article and Find Full Text PDF

Limited options are available for treating patients with advanced prostate cancer (PC). Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24), an IL-10 family cytokine, exhibits pleiotropic anticancer activities without adversely affecting normal cells. We previously demonstrated that suppression of the prosurvival Bcl-2 family member, myeloid cell leukemia-1 (Mcl-1), is required for mda-7/IL-24-mediated apoptosis of prostate carcinomas.

View Article and Find Full Text PDF

We report comprehensive structure-activity relationship studies on a novel series of c-Jun N-terminal kinase (JNK) inhibitors. Intriguingly, the compounds have a dual inhibitory activity by functioning as both ATP and JIP mimetics, possibly by binding to both the ATP binding site and to the docking site of the kinase. Several of such novel compounds display potent JNK inhibitory profiles both in vitro and in cell.

View Article and Find Full Text PDF

Our focus in the past several years has been on the identification of novel and effective pan-Bcl-2 antagonists. We have recently reported a series of Apogossypolone (ApoG2) derivatives, resulting in the chiral compound (±) BI97D6. We report here the synthesis and evaluation on its optically pure (-) and (+) atropisomers.

View Article and Find Full Text PDF

Overexpression of antiapoptotic Bcl-2 family proteins is commonly related with tumor maintenance, progression, and chemoresistance. Inhibition of these antiapoptotic proteins is an attractive approach for cancer therapy. Guided by nuclear magnetic resonance (NMR) binding assays, a series of 5,5' substituted compound 6a (Apogossypolone) derivatives was synthesized and identified pan-active antagonists of antiapoptotic Bcl-2 family proteins, with binding potency in the low micromolar to nanomolar range.

View Article and Find Full Text PDF

In our continued attempts to identify novel and effective pan-Bcl-2 antagonists, we have recently reported a series of compound 2 (Apogossypol) derivatives, resulting in the chiral compound 4 (8r). We report here the synthesis and evaluation on its optically pure individual isomers. Compound 11 (BI-97C1), the most potent diastereoisomer of compound 4, inhibits the binding of BH3 peptides to Bcl-X(L), Bcl-2, Mcl-1, and Bfl-1 with IC(50) values of 0.

View Article and Find Full Text PDF

A series of thiadiazole derivatives has been designed as potential allosteric, substrate competitive inhibitors of the protein kinase JNK. We report on the synthesis, characterization and evaluation of a series of compounds that resulted in the identification of potent and selective JNK inhibitors targeting its JIP-1 docking site.

View Article and Find Full Text PDF

The E3 ubiquitin ligase Siah2 has been implicated in the regulation of the hypoxia response, as well as in the control of Ras, JNK/p38/NF-kappaB signaling pathways. Both Ras/mitogen-activated protein kinase (MAPK) and hypoxia pathways are important for melanoma development and progression, pointing to the possible use of Siah2 as target for treatment of this tumor type. In the present study, we have established a high-throughput electro-chemiluninescent-based assay in order to screen and identify inhibitors of Siah2 ubiquitin ligase activity.

View Article and Find Full Text PDF