Publications by authors named "John Skehel"

The subunits of the influenza hemagglutinin (HA) trimer are synthesized as single-chain precursors (HA0s) that are proteolytically cleaved into the disulfide-linked polypeptides HA1 and HA2. Cleavage is required for activation of membrane fusion at low pH, which occurs at the beginning of infection following transfer of cell-surface-bound viruses into endosomes. Activation results in extensive changes in the conformation of cleaved HA.

View Article and Find Full Text PDF

Recently emerged variants of SARS-CoV-2 contain in their surface spike glycoproteins multiple substitutions associated with increased transmission and resistance to neutralising antibodies. We have examined the structure and receptor binding properties of spike proteins from the B.1.

View Article and Find Full Text PDF

The majority of currently circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses have mutant spike glycoproteins that contain the D614G substitution. Several studies have suggested that spikes with this substitution are associated with higher virus infectivity. We use cryo-electron microscopy to compare G614 and D614 spikes and show that the G614 mutant spike adopts a range of more open conformations that may facilitate binding to the SARS-CoV-2 receptor, ACE2, and the subsequent structural rearrangements required for viral membrane fusion.

View Article and Find Full Text PDF

Coronaviruses of bats and pangolins have been implicated in the origin and evolution of the pandemic SARS-CoV-2. We show that spikes from Guangdong Pangolin-CoVs, closely related to SARS-CoV-2, bind strongly to human and pangolin ACE2 receptors. We also report the cryo-EM structure of a Pangolin-CoV spike protein and show it adopts a fully-closed conformation and that, aside from the Receptor-Binding Domain, it resembles the spike of a bat coronavirus RaTG13 more than that of SARS-CoV-2.

View Article and Find Full Text PDF

The CR3022 antibody, selected from a group of SARS-CoV monoclonal antibodies for its ability to cross-react with SARS-CoV-2, has been examined for its ability to bind to the ectodomain of the SARS-CoV-2 spike glycoprotein. Using cryo-electron microscopy we show that antibody binding requires rearrangements in the S1 domain that result in dissociation of the spike.

View Article and Find Full Text PDF
Article Synopsis
  • - In 2014, the A/H10N7 influenza virus outbreak among seals in Northern Europe led to significant declines in seal populations, highlighting the virus's impact on wildlife.
  • - The study focused on changes in the hemagglutinin surface protein of the seal A/H10N7 virus, which enhanced its stability and ability to bind to receptors, particularly those similar to human receptors.
  • - Findings suggest that the seal variant of the virus can transmit via aerosol or respiratory droplets in ferrets, indicating the potential risk this avian-origin influenza virus poses to other mammals, including humans.
View Article and Find Full Text PDF

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by virus binding to the ACE2 cell-surface receptors, followed by fusion of the virus and cell membranes to release the virus genome into the cell. Both receptor binding and membrane fusion activities are mediated by the virus spike glycoprotein. As with other class-I membrane-fusion proteins, the spike protein is post-translationally cleaved, in this case by furin, into the S1 and S2 components that remain associated after cleavage.

View Article and Find Full Text PDF
Article Synopsis
  • SARS-CoV-2 likely originated from bats, possibly through another animal, and this study focuses on the spike (S) glycoprotein of both SARS-CoV-2 and a related bat virus, RaTG13.
  • Researchers used cryo-electron microscopy to analyze the structures of the S proteins, observing differences in stability and binding affinity to the ACE2 receptor.
  • Key findings showed that while the S proteins are structurally similar, SARS-CoV-2's spike is more stable before cleavage and binds to the ACE2 receptor more effectively, indicating that cleavage affects its stability and ability to attach to the receptor.
View Article and Find Full Text PDF

Hemagglutinins (HAs) are the receptor-binding and membrane fusion glycoproteins of influenza viruses. They recognize sialic acid-containing, cell-surface glycoconjugates as receptors but have limited affinity for them, and, as a consequence, virus attachment to cells requires their interaction with several virus HAs. Receptor-bound virus is transferred into endosomes where membrane fusion by HAs is activated at pH between 5 and 6.

View Article and Find Full Text PDF

Infection by enveloped viruses involves fusion of their lipid envelopes with cellular membranes to release the viral genome into cells. For HIV, Ebola, influenza and numerous other viruses, envelope glycoproteins bind the infecting virion to cell-surface receptors and mediate membrane fusion. In the case of influenza, the receptor-binding glycoprotein is the haemagglutinin (HA), and following receptor-mediated uptake of the bound virus by endocytosis, it is the HA that mediates fusion of the virus envelope with the membrane of the endosome.

View Article and Find Full Text PDF

Viruses with membranes fuse them with cellular membranes, to transfer their genomes into cells at the beginning of infection. For Influenza virus, the membrane glycoprotein involved in fusion is the hemagglutinin (HA), the 3D structure of which is known from X-ray crystallographic studies. The soluble ectodomain fragments used in these studies lacked the "membrane anchor" portion of the molecule.

View Article and Find Full Text PDF

Several technologies have been developed to isolate human antibodies against different target antigens as a source of potential therapeutics, including hybridoma technology, phage and yeast display systems. For conventional antibodies, this involves either random pairing of VH and variable light (VL) domains in combinatorial display libraries or isolation of cognate pairs of VH and VL domains from human B cells or from transgenic mice carrying human immunoglobulin loci followed by single-cell sorting, single-cell RT-PCR, and bulk cloning of isolated natural VH-VL pairs. Heavy-chain-only antibodies (HCAbs) that naturally occur in camelids require only heavy immunoglobulin chain cloning.

View Article and Find Full Text PDF
Article Synopsis
  • Influenza virus continues to pose a significant threat due to its ability to change and avoid detection by vaccines, known as antigenic drift.
  • Researchers have isolated a human monoclonal antibody, MEDI8852, that effectively targets all influenza A hemagglutinin subtypes and shows better effectiveness compared to other antibodies.
  • MEDI8852 has been shown to work well in animal studies, providing a promising approach for immunotherapy against influenza infections in humans.
View Article and Find Full Text PDF

H5N1 avian influenza viruses remain a threat to public health mainly because they can cause severe infections in humans. These viruses are widespread in birds, and they vary in antigenicity forming three major clades and numerous antigenic variants. The most important features of the human monoclonal antibody FLD194 studied here are its broad specificity for all major clades of H5 influenza HAs, its high affinity, and its ability to block virus infection, in vitro and in vivo.

View Article and Find Full Text PDF

The increased cap-independent translation of anti-apoptotic proteins is involved in the development of drug resistance in lung cancer but signalling events regulating this are poorly understood. Fibroblast growth factor 2 (FGF-2) signalling-induced S6 kinase 2 (S6K2) activation is necessary, but the downstream mediator(s) coupling this kinase to the translational response is unknown. Here, we show that S6K2 binds and phosphorylates hnRNPA1 on novel Ser4/6 sites, increasing its association with BCL-XL and XIAP mRNAs to promote their nuclear export.

View Article and Find Full Text PDF

In 2004 an hemagglutinin 3 neuraminidase 8 (H3N8) equine influenza virus was transmitted from horses to dogs in Florida and subsequently spread throughout the United States and to Europe. To understand the molecular basis of changes in the antigenicity of H3 hemagglutinins (HAs) that have occurred during virus evolution in horses, and to investigate the role of HA in the equine to canine cross-species transfer, we used X-ray crystallography to determine the structures of the HAs from two antigenically distinct equine viruses and from a canine virus. Structurally all three are very similar with the majority of amino acid sequence differences between the two equine HAs located on the virus membrane-distal molecular surface.

View Article and Find Full Text PDF

Mutant H5N1 influenza viruses have been isolated from humans that have increased human receptor avidity. We have compared the receptor binding properties of these mutants with those of wild-type viruses, and determined the structures of their haemagglutinins in complex with receptor analogues. Mutants from Vietnam bind tighter to human receptor by acquiring basic residues near the receptor binding site.

View Article and Find Full Text PDF

H10N8 follows H7N9 and H5N1 as the latest in a line of avian influenza viruses that cause serious disease in humans and have become a threat to public health. Since December 2013, three human cases of H10N8 infection have been reported, two of whom are known to have died. To gather evidence relating to the epidemic potential of H10 we have determined the structure of the haemagglutinin of a previously isolated avian H10 virus and we present here results relating especially to its receptor-binding properties, as these are likely to be major determinants of virus transmissibility.

View Article and Find Full Text PDF

Unlabelled: Influenza B viruses with a novel I221L substitution in neuraminidase (NA) conferring high-level resistance to oseltamivir were isolated from an immunocompromised patient after prolonged oseltamivir treatment.

Methods: Enzymatic characterization of the NAs (Km, Ki) and the in vitro fitness of viruses carrying wild-type or mutated (I221L) NA genes were evaluated. Proportions of wild-type and mutated NA genes were directly quantified in the patient samples.

View Article and Find Full Text PDF

The homeostatic mechanisms that regulate the maintenance of immunological memory to the multiple pathogen encounters over time are unknown. We found that a single malaria episode caused significant dysregulation of pre-established Influenza A virus-specific long-lived plasma cells (LLPCs) resulting in the loss of Influenza A virus-specific Abs and increased susceptibility to Influenza A virus re-infection. This loss of LLPCs involved an FcγRIIB-dependent mechanism, leading to their apoptosis.

View Article and Find Full Text PDF

As avian influenza A(H5N1) viruses continue to circulate in Asia and Africa, global concerns of an imminent pandemic persist. Recent experimental studies suggest that efficient transmission between humans of current H5N1 viruses only requires a few genetic changes. An essential step is alteration of the virus hemagglutinin from preferential binding to avian receptors for the recognition of human receptors present in the upper airway.

View Article and Find Full Text PDF

Of the 132 people known to have been infected with H7N9 influenza viruses in China, 37 died, and many were severely ill. Infection seems to have involved contact with infected poultry. We have examined the receptor-binding properties of this H7N9 virus and compared them with those of an avian H7N3 virus.

View Article and Find Full Text PDF

Cell-surface-receptor binding by influenza viruses is a key determinant of their transmissibility, both from avian and animal species to humans as well as from human to human. Highly pathogenic avian H5N1 viruses that are a threat to public health have been observed to acquire affinity for human receptors, and transmissible-mutant-selection experiments have identified a virus that is transmissible in ferrets, the generally accepted experimental model for influenza in humans. Here, our quantitative biophysical measurements of the receptor-binding properties of haemagglutinin (HA) from the transmissible mutant indicate a small increase in affinity for human receptor and a marked decrease in affinity for avian receptor.

View Article and Find Full Text PDF

The hemagglutinin (HA) of influenza A(H3N2) virus responsible for the 1968 influenza pandemic derived from an avian virus. On introduction into humans, its receptor binding properties had changed from a preference for avian receptors (α2,3-linked sialic acid) to a preference for human receptors (α2,6-linked sialic acid). By 2001, the avidity of human H3 viruses for avian receptors had declined, and since then the affinity for human receptors has also decreased significantly.

View Article and Find Full Text PDF