Publications by authors named "John Silbereis"

We herein report the discovery, synthesis, and evolution of a series of indazoles and azaindazoles as CNS-penetrant IRAK4 inhibitors. Described is the use of structure-based and property-based drug design strategically leveraged to guide the property profile of a key series into a favorable property space while maintaining potency and selectivity. Our rationale that led toward functionalities with potency improvements, CNS-penetration, solubility, and favorable drug-like properties is portrayed.

View Article and Find Full Text PDF

Interleukin receptor associated kinase 4 (IRAK4) plays an important role in innate immune signaling through Toll-like and interleukin-1 receptors and represents an attractive target for the treatment of inflammatory diseases and cancer. We previously reported the development of a potent, selective, and brain-penetrant imidazopyrimidine series of IRAK4 inhibitors. However, lead molecule BIO-7488 () suffered from low solubility which led to variable PK, compound accumulation, and poor in vivo tolerability.

View Article and Find Full Text PDF

Autoantibodies are a hallmark of numerous neurological disorders, including multiple sclerosis, autoimmune encephalitides and neuromyelitis optica. Whilst well understood in peripheral myeloid cells, the pathophysiological significance of autoantibody-induced Fc receptor signalling in microglia remains unknown, in part due to the lack of a robust in vivo model. Moreover, the application of therapeutic antibodies for neurodegenerative disease also highlights the importance of understanding Fc receptor signalling in microglia.

View Article and Find Full Text PDF

The brains of humans and other mammals are highly vulnerable to interruptions in blood flow and decreases in oxygen levels. Here we describe the restoration and maintenance of microcirculation and molecular and cellular functions of the intact pig brain under ex vivo normothermic conditions up to four hours post-mortem. We have developed an extracorporeal pulsatile-perfusion system and a haemoglobin-based, acellular, non-coagulative, echogenic, and cytoprotective perfusate that promotes recovery from anoxia, reduces reperfusion injury, prevents oedema, and metabolically supports the energy requirements of the brain.

View Article and Find Full Text PDF

Objective: Neonatal white matter injury (NWMI) is a lesion found in preterm infants that can lead to cerebral palsy. Although antagonists of bone morphogenetic protein (BMP) signaling, such as Noggin, promote oligodendrocyte precursor cell (OPC) production after hypoxic-ischemic (HI) injury, the downstream functional targets are poorly understood. The basic helix-loop-helix protein, oligodendrocyte transcription factor 1 (Olig1), promotes oligodendrocyte (OL) development and is essential during remyelination in adult mice.

View Article and Find Full Text PDF

Trisomy 21, or Down syndrome (DS), is the most common genetic cause of developmental delay and intellectual disability. To gain insight into the underlying molecular and cellular pathogenesis, we conducted a multi-region transcriptome analysis of DS and euploid control brains spanning from mid-fetal development to adulthood. We found genome-wide alterations in the expression of a large number of genes, many of which exhibited temporal and spatial specificity and were associated with distinct biological processes.

View Article and Find Full Text PDF

The human CNS follows a pattern of development typical of all mammals, but certain neurodevelopmental features are highly derived. Building the human CNS requires the precise orchestration and coordination of myriad molecular and cellular processes across a staggering array of cell types and over a long period of time. Dysregulation of these processes affects the structure and function of the CNS and can lead to neurological or psychiatric disorders.

View Article and Find Full Text PDF

Myelin sheaths provide critical functional and trophic support for axons in white matter tracts of the brain. Oligodendrocyte precursor cells (OPCs) have extraordinary metabolic requirements during development as they differentiate to produce multiple myelin segments, implying that they must first secure adequate access to blood supply. However, mechanisms that coordinate myelination and angiogenesis are unclear.

View Article and Find Full Text PDF

In colon cancer, mutation of the Wnt repressor APC (encoding adenomatous polyposis coli) leads to a state of aberrant and unrestricted high-activity signaling. However, the relevance of high Wnt tone in non-genetic human disease is unknown. Here we demonstrate that distinct functional states of Wnt activity determine oligodendrocyte precursor cell (OPC) differentiation and myelination.

View Article and Find Full Text PDF

Abnormal GABAergic interneuron density, and imbalance of excitatory versus inhibitory tone, is thought to result in epilepsy, neurodevelopmental disorders, and psychiatric disease. Recent studies indicate that interneuron cortical density is determined primarily by the size of the precursor pool in the embryonic telencephalon. However, factors essential for regulating interneuron allocation from telencephalic multipotent precursors are poorly understood.

View Article and Find Full Text PDF

Premature children born with very low birth weight (VLBW) can suffer chronic hypoxic injury as a consequence of abnormal lung development and cardiovascular abnormalities, often leading to grave neurological and behavioral consequences. Emerging evidence suggests that environmental enrichment improves outcome in animal models of adult brain injury and disease; however, little is known about the impact of environmental enrichment following developmental brain injury. Intriguingly, data on socio-demographic factors from longitudinal studies that examined a number of VLBW cohorts suggest that early environment has a substantial impact on neurological and behavioral outcomes.

View Article and Find Full Text PDF

Permanent damage to white matter tracts, comprising axons and myelinating oligodendrocytes, is an important component of brain injuries of the newborn that cause cerebral palsy and cognitive disabilities, as well as multiple sclerosis in adults. However, regulatory factors relevant in human developmental myelin disorders and in myelin regeneration are unclear. We found that AXIN2 was expressed in immature oligodendrocyte progenitor cells (OLPs) in white matter lesions of human newborns with neonatal hypoxic-ischemic and gliotic brain damage, as well as in active multiple sclerosis lesions in adults.

View Article and Find Full Text PDF

Glial fibrillary acidic protein-positive (GFAP(+)) cells give rise to new neurons in the neurogenic niches; whether they are able to generate neurons in the cortical parenchyma is not known. Here, we use genetic fate mapping to examine the progeny of GFAP(+) cells after postnatal hypoxia, a model for the brain injury observed in premature children. After hypoxia, immature cortical astroglia underwent a shift toward neuronal fate and generated cortical excitatory neurons that appeared synaptically integrated into the circuitry.

View Article and Find Full Text PDF

Newborn neurological injuries are the leading cause of intellectual and motor disabilities that are associated with cerebral palsy. Cerebral white matter injury is a common feature in hypoxic-ischemic encephalopathy (HIE), which affects full-term infants, and in periventricular leukomalacia (PVL), which affects preterm infants. This article discusses recent efforts to model neonatal white matter injury using mammalian systems.

View Article and Find Full Text PDF

It is well established that cerebellar granule cell precursors (GCPs) initially derive from progenitors in the rhombic lip of the embryonic cerebellar primordium. GCPs proliferate and migrate tangentially across the cerebellum to form the external granule cell layer (EGL) in late embryogenesis and early postnatal development. It is unclear whether GCPs are specified exclusively in the embryonic rhombic lip or whether their precursor persists in the neonate.

View Article and Find Full Text PDF

Neural stem or progenitor cells (NSC/NPCs) able to generate the different neuron and glial cell types of the cerebellum have been isolated in vitro, but their identity and location in the intact cerebellum are unclear. Here, we use inducible Cre recombination in GFAPCreER(T2) mice to irreversibly activate reporter gene expression at P2 (postnatal day 2), P5, and P12 in cells with GFAP (glial fibrillary acidic protein) promoter activity and analyze the fate of genetically tagged cells in vivo. We show that cells tagged at P2-P5 with beta-galactosidase or enhanced green fluorescent proteins reporter genes generate at least 30% of basket and stellate GABAergic interneurons in the molecular layer (ML) and that they lose their neurogenic potential by P12, after which they generate only glia.

View Article and Find Full Text PDF

Chronic postnatal hypoxia causes an apparent loss of cortical neurons that is reversed during recovery (Fagel et al., 2006). The cellular and molecular mechanisms underlying this plasticity are not understood.

View Article and Find Full Text PDF

Objective: Although preterm very low birth weight infants have a high prevalence of neuroanatomical abnormalities when evaluated at term-equivalent age, patterns of brain growth in prematurely born infants during school age and adolescence remain largely unknown. Our goal was to test the hypothesis that preterm birth results in long-term dynamic changes in the developing brain.

Methods: We performed serial volumetric MRI studies at ages 8 and 12 years in 55 preterm infants born weighing 600 to 1250 g and 20 term control children who participated in the follow-up component of a prospective, randomized, placebo-controlled intraventricular hemorrhage prevention study.

View Article and Find Full Text PDF

Objectives: To more precisely examine regional and subregional microstructural brain changes associated with preterm birth.

Study Design: We obtained brain volumes from 29 preterm children, age 12 years, with no ultrasound scanning evidence of intraventricular hemorrhage or cystic periventricular leukomalacia in the newborn period, and 22 age- and sex-matched term control subjects.

Results: Preterm male subjects demonstrated significantly lower white matter volumes in bilateral cingulum, corpus callosum, corticospinal tract, prefrontal cortex, superior and inferior longitudinal fasciculi compared with term male subjects.

View Article and Find Full Text PDF

The lifelong addition of neurons to the hippocampus is a remarkable form of structural plasticity, yet the molecular controls over proliferation, neuronal fate determination, survival, and maturation are poorly understood. Expression of Notch1 was found to change dynamically depending on the differentiation state of neural precursor cells. Through the use of inducible gain- and loss-of-function of Notch1 mice we show that this membrane receptor is essential to these distinct processes.

View Article and Find Full Text PDF

Three main cellular components have been described in the CNS: neurons, astrocytes, and oligodendrocytes. In the past 10 years, lineage studies first based on retroviruses in the embryonic CNS and then by genetic fate mapping in both the prenatal and postnatal CNS have proposed that astroglial cells can be progenitors for neurons and oligodendrocytes. Hence, the population of astroglial cells is increasingly recognized as heterogeneous and diverse, encompassing cell types performing widely different roles in development and plasticity.

View Article and Find Full Text PDF

To identify the fates that astroglial cells can attain in the postnatal brain, we generated mice carrying an inducible Cre recombinase (Cre-ER(T2)) controlled by the human GFAP promoter (hGFAP). In mice carrying the GCE (hGFAP-Cre-ER(T2)) transgene, OHT (4-hydroxy-tamoxifen) injections induced Cre recombination in astroglial cells at postnatal day 5 and allowed us to permanently tag these cells with reporter genes. Three days after recombination, reporter-tagged cells were quiescent astroglial cells that expressed the stem cell marker LeX in the subventricular zone (SVZ) and dentate gyrus (DG).

View Article and Find Full Text PDF

Most regions of the mature mammalian brain, including the cerebral cortex, appear to be unable to support the genesis of new neurons. Here, we report that a low level of neurogenesis occurs in the cerebral cortex of the infant mouse brain and is enhanced by chronic perinatal hypoxia. When mice were reared in a low-oxygen environment from postnatal days 3 to 11, approximately 30% of the cortical neurons were lost after the insult; yet this damage was transient.

View Article and Find Full Text PDF