Publications by authors named "John Schneible"

Breast cancer is considered one of the utmost neoplastic diseases globally, with a high death rate of patients. Over the last decades, many approaches have been studied to early diagnose and treat it, such as chemotherapy, hormone therapy, immunotherapy, and MRI and biomarker tests; do not show the optimal efficacy. These existing approaches are accompanied by severe side effects, thus recognizing these challenges, a great effort has been done to find out the new remedies for breast cancer.

View Article and Find Full Text PDF

Native platelets are crucial players in wound healing. Key to their role is the ability of their surface receptor GPIIb/IIIa to bind fibrin at injury sites, thereby promoting clotting. When platelet activity is impaired as a result of traumatic injury or certain diseases, uncontrolled bleeding can result.

View Article and Find Full Text PDF

We present the construction and screening of yeast display libraries of post-translationally modified peptides wherein site-selective enzymatic treatment of linear peptides is achieved using bacterial transglutaminase. To this end, we developed two alternative routes, namely (i) yeast display of linear peptides followed by treatment with recombinant transglutaminase in solution; or (ii) intracellular co-expression of linear peptides and transglutaminase to achieve peptide modification in the endoplasmic reticulum prior to yeast surface display. The efficiency of peptide modification was evaluated via orthogonal detection of epitope tags integrated in the yeast-displayed peptides by flow cytometry, and via comparative cleavage of putative cyclic vs.

View Article and Find Full Text PDF

Following the consolidation of therapeutic proteins in the fight against cancer, autoimmune, and neurodegenerative diseases, recent advancements in biochemistry and biotechnology have introduced a host of next-generation biotherapeutics, such as CRISPR-Cas nucleases, stem and car-T cells, and viral vectors for gene therapy. With these drugs entering the clinical pipeline, a new challenge lies ahead: how to manufacture large quantities of high-purity biotherapeutics that meet the growing demand by clinics and biotech companies worldwide. The protein ligands employed by the industry are inadequate to confront this challenge: while featuring high binding affinity and selectivity, these ligands require laborious engineering and expensive manufacturing, are prone to biochemical degradation, and pose safety concerns related to their bacterial origin.

View Article and Find Full Text PDF

Hydrogels constructed with functionalized polysaccharides are of interest in a multitude of applications, chiefly the design of therapeutic and regenerative formulations. Tailoring the chemical modification of polysaccharide-based hydrogels to achieve specific drug release properties involves the optimization of many tunable parameters, including (i) the type, degree (χ), and pattern of the functional groups, (ii) the water-polymer ratio, and (iii) the drug payload. To guide the design of modified polysaccharide hydrogels for drug release, we have developed a computational toolbox that predicts the structure and physicochemical properties of acylated chitosan chains, and their impact on the transport of drug molecules.

View Article and Find Full Text PDF

Purpose: This study aimed to develop a hydrogel system for treating aggressive triple negative breast cancer (TNBC) via kinetically-controlled delivery of the synergistic drug pair doxorubicin (DOX) and gemcitabine (GEM). A 2D assay was adopted to evaluate therapeutic efficacy by determining combination index (CI), and a 3D assay using cancer spheroids was implemented to assess the potential for translation in vivo.

Methods: The release of DOX and GEM from an acetylated-chitosan (ACS, degree of acetylation χ = 40 ± 5%) was characterized to identify a combined drug loading that affords release kinetics and dose that are therapeutically synergistic.

View Article and Find Full Text PDF

The impact of next-generation biorecognition elements (ligands) will be determined by the ability to remotely control their binding activity for a target biomolecule in complex environments. Compared to conventional mechanisms for regulating binding affinity (pH, ionic strength, or chaotropic agents), light provides higher accuracy and rapidity, and is particularly suited for labile targets. In this study, we demonstrate a general method to develop azobenzene-cyclized peptide ligands with light-controlled affinity for target proteins.

View Article and Find Full Text PDF

The scheduled delivery of synergistic drug combinations is increasingly recognized as highly effective against advanced solid tumors. Of particular interest are composite systems that release a sequence of drugs with defined kinetics and molar ratios to enhance therapeutic effect, while minimizing the dose to patients. In this work, we developed a homogeneous composite comprising modified graphene oxide (GO) nanoparticles embedded in a Max8 peptide hydrogel, which provides controlled kinetics and molar ratios of release of doxorubicin (DOX) and gemcitabine (GEM).

View Article and Find Full Text PDF

Combination chemotherapy with a defined ratio and sequence of drug release is a clinically established and effective route to treat advanced solid tumors. In this context, a growing body of literature demonstrates the potential of hydrogels constructed with chemically modified polysaccharides as depots for controlled release of chemotherapeutics. Identifying the appropriate modification in terms of physicochemical properties of the functional group and its degree of substitution (χ) to achieve the desired release profile for multiple drugs is, however, a complex multivariate problem.

View Article and Find Full Text PDF