Publications by authors named "John Schell"

Article Synopsis
  • - Stem cell-based embryo models are essential for studying early human development, but their effectiveness depends on how closely they mimic real embryos at the molecular, cellular, and structural levels.
  • - Researchers created a comprehensive reference dataset by integrating six existing datasets that track human development from the zygote stage to the gastrula stage, providing a benchmark for comparing human embryo models.
  • - Using an advanced analysis method called stabilized Uniform Manifold Approximation and Projection, the new reference helps identify cell types in various embryo models, revealing potential misannotations without proper reference comparisons.
View Article and Find Full Text PDF
Article Synopsis
  • Rhesus cytomegalovirus (RhCMV) vectors help control simian immunodeficiency virus (SIV) by activating CD8 T cells that are restricted by major histocompatibility complex (MHC)-E.
  • The effectiveness of these responses relies on the deletion of eight specific RhCMV gene sequences that are also found in human cytomegalovirus (HCMV).
  • HCMV's UL18 gene inhibits unconventional T cell activation by binding to an receptor (LIR-1), so removing this binding ability from the HCMV genes in vaccines could enhance the induction of protective MHC-E-restricted T cells.
View Article and Find Full Text PDF

Serrated polyposis syndrome (SPS) presents with multiple sessile serrated lesions (SSL) in the large intestine and confers increased colorectal cancer (CRC) risk. However, the etiology of SPS is not known. SSL-derived organoids have not been previously studied but may help provide insights into SPS pathogenesis and identify novel biomarkers and chemopreventive strategies.

View Article and Find Full Text PDF

Poxvirus infections of the skin are a recent emerging public health concern, yet the mechanisms that mediate protective immunity against these viral infections remain largely unknown. Here, we show that T helper 1 (Th1) memory CD4 T cells are necessary and sufficient to provide complete and broad protection against poxvirus skin infections, whereas memory CD8 T cells are dispensable. Core 2 O-glycan-synthesizing Th1 effector memory CD4 T cells rapidly infiltrate the poxvirus-infected skin microenvironment and produce interferon γ (IFNγ) in an antigen-dependent manner, causing global changes in gene expression to promote anti-viral immunity.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on how pyruvate and glutamine are used by diffuse large B cell lymphomas (DLBCLs) for energy and growth, particularly emphasizing mitochondrial pyruvate carrier (MPC) involvement.
  • It was discovered that DLBCLs prefer glutamine over pyruvate as a carbon source for cellular processes, which is contrary to other cell types.
  • MPC inhibition reduces DLBCL growth in environments similar to extracellular matrix (ECM), highlighting the importance of metabolic adaptations in different environments for lymphoma cell proliferation.
View Article and Find Full Text PDF

The first lineage choice in human embryo development separates trophectoderm from the inner cell mass. Naïve human embryonic stem cells are derived from the inner cell mass and offer possibilities to explore how lineage integrity is maintained. Here, we discover that polycomb repressive complex 2 (PRC2) maintains naïve pluripotency and restricts differentiation to trophectoderm and mesoderm lineages.

View Article and Find Full Text PDF

CD8 T cells are key mediators of antiviral and antitumor immunity. The isolation and study of Ag-specific CD8 T cells, as well as mapping of their MHC restriction, has practical importance to the study of disease and the development of therapeutics. Unfortunately, most experimental approaches are cumbersome, owing to the highly variable and donor-specific nature of MHC-bound peptide/TCR interactions.

View Article and Find Full Text PDF

The COVID-19 pandemic is a global health emergency, and the development of a successful vaccine will ultimately be required to prevent the continued spread and seasonal recurrence of this disease within the human population. However, very little is known about either the quality of the adaptive immune response or the viral Ag targets that will be necessary to prevent the spread of the infection. In this study, we generated recombinant Vaccinia virus expressing the full-length spike protein from SARS-CoV-2 (VacV-S) to evaluate the cellular and humoral immune response mounted against this viral Ag in mice.

View Article and Find Full Text PDF

Totipotency is the ability of a single cell to give rise to all of the differentiated cell types that build the conceptus, yet how to capture this property in vitro remains incompletely understood. Defining totipotency relies on a variety of assays of variable stringency. Here, we describe criteria to define totipotency.

View Article and Find Full Text PDF

Cardiac glucose uptake and oxidation are reduced in diabetes despite hyperglycemia. Mitochondrial dysfunction contributes to heart failure in diabetes. It is unclear whether these changes are adaptive or maladaptive.

View Article and Find Full Text PDF
Article Synopsis
  • Metabolic changes are crucial for the growth of tumor cells, but the processes behind how tumors start, especially in colorectal cancer (CRC), are not well understood.
  • In early stages of CRC, there is a specific increase in glycolysis and a decrease in a protein called mitochondrial pyruvate carrier (MPC), which plays a key role in linking glycolysis to glucose metabolism in mitochondria.
  • Studies show that inhibiting MPC leads to more tumors in mouse models, indicating that the regulation of pyruvate metabolism is vital for starting cancer development.
View Article and Find Full Text PDF

Major histocompatibility complex E (MHC-E) is a highly conserved nonclassical MHC-Ib molecule that tightly binds peptides derived from leader sequences of classical MHC-Ia molecules for presentation to natural killer cells. However, MHC-E also binds diverse foreign and neoplastic self-peptide antigens for presentation to CD8 T cells. Although the determinants of MHC-E-restricted T cell priming remain unknown, these cells are induced in humans infected with pathogens containing genes that inhibit the transporter associated with antigen processing (TAP).

View Article and Find Full Text PDF

The transcription factor Oct1/Pou2f1 promotes poised gene expression states, mitotic stability, glycolytic metabolism and other characteristics of stem cell potency. To determine the effect of Oct1 loss on stem cell maintenance and malignancy, we deleted Oct1 in two different mouse gut stem cell compartments. Oct1 deletion preserved homeostasis in vivo and the ability to establish organoids in vitro, but blocked the ability to recover from treatment with dextran sodium sulfate, and the ability to maintain organoids after passage.

View Article and Find Full Text PDF

DNA fluorescence in situ hybridization (DNA FISH) is a powerful method to study chromosomal organization in single cells. At present, there is a lack of free resources of DNA FISH probes and probe design tools which can be readily applied. Here, we describe iFISH, an open-source repository currently comprising 380 DNA FISH probes targeting multiple loci on the human autosomes and chromosome X, as well as a genome-wide database of optimally designed oligonucleotides and a freely accessible web interface ( http://ifish4u.

View Article and Find Full Text PDF

D-dimer is an indirect marker of fibrinolysis and fibrin turnover; this molecule exhibits unique properties as a biological marker of hemostatic abnormalities as well as an indicator of intravascular thrombosis. D-dimer is a soluble fibrin degradation product that results from the systematic degradation of vascular thrombi through the fibrinolytic mechanism. Because of this, the D-dimer serves as a valuable marker of activation of coagulation and fibrinolysis in a number of clinical scenarios.

View Article and Find Full Text PDF

Allogeneic transplantation (allo-HCT) has led to the cure of HIV in one individual, raising the question of whether transplantation can eradicate the HIV reservoir. To test this, we here present a model of allo-HCT in SHIV-infected, cART-suppressed nonhuman primates. We infect rhesus macaques with SHIV-1157ipd3N4, suppress them with cART, then transplant them using MHC-haploidentical allogeneic donors during continuous cART.

View Article and Find Full Text PDF

Compared to their differentiated progeny, stem cells are often characterized by distinct metabolic landscapes that emphasize anaerobic glycolysis and a lower fraction of mitochondrial carbohydrate oxidation. Until recently, the metabolic program of stem cells had been thought to be a byproduct of the environment, rather than an intrinsic feature determined by the cell itself. However, new studies highlight the impact of metabolic behavior on the maintenance and function of intestinal stem cells and hair follicle stem cells.

View Article and Find Full Text PDF

A critical question facing the field of transplantation is how to control effector T cell (T) activation while preserving regulatory T cell (T) function. Standard calcineurin inhibitor-based strategies can partially control T, but breakthrough activation still occurs, and these agents are antagonistic to T function. Conversely, mechanistic target of rapamycin (mTOR) inhibition with sirolimus is more T-compatible but is inadequate to fully control T activation.

View Article and Find Full Text PDF

Most differentiated cells convert glucose to pyruvate in the cytosol through glycolysis, followed by pyruvate oxidation in the mitochondria. These processes are linked by the mitochondrial pyruvate carrier (MPC), which is required for efficient mitochondrial pyruvate uptake. In contrast, proliferative cells, including many cancer and stem cells, perform glycolysis robustly but limit fractional mitochondrial pyruvate oxidation.

View Article and Find Full Text PDF

Although normally dormant, hair follicle stem cells (HFSCs) quickly become activated to divide during a new hair cycle. The quiescence of HFSCs is known to be regulated by a number of intrinsic and extrinsic mechanisms. Here we provide several lines of evidence to demonstrate that HFSCs utilize glycolytic metabolism and produce significantly more lactate than other cells in the epidermis.

View Article and Find Full Text PDF

Ewing sarcoma is a bone malignancy driven by a translocation event resulting in the fusion protein EWS/FLI1 (EF). EF functions as an aberrant and oncogenic transcription factor that misregulates the expression of thousands of genes. Previous work has focused principally on determining important transcriptional targets of EF, as well as characterizing important regulatory partnerships in EF-dependent transcriptional programs.

View Article and Find Full Text PDF

Due to their varied metabolic and signalling roles, mitochondria are important in mediating cell behaviour. By altering mitochondrial function, two studies now identify metabolite-induced epigenetic changes that have profound effects on haematopoietic stem cell fate and function.

View Article and Find Full Text PDF

Human pluripotent stem cells (PSCs) exist in naive and primed states and provide important models to investigate the earliest stages of human development. Naive cells can be obtained through primed-to-naive resetting, but there are no reliable methods to prospectively isolate unmodified naive cells during this process. Here we report comprehensive profiling of cell surface proteins by flow cytometry in naive and primed human PSCs.

View Article and Find Full Text PDF

The segregation of the trophectoderm (TE) from the inner cell mass (ICM) in the mouse blastocyst is determined by position-dependent Hippo signaling. However, the window of responsiveness to Hippo signaling, the exact timing of lineage commitment and the overall relationship between cell commitment and global gene expression changes are still unclear. Single-cell RNA sequencing during lineage segregation revealed that the TE transcriptional profile stabilizes earlier than the ICM and prior to blastocyst formation.

View Article and Find Full Text PDF