Astrobiology
September 2009
Stellar astrospheres--the plasma cocoons carved out of the interstellar medium by stellar winds--are one of several buffers that partially screen planetary atmospheres and surfaces from high-energy radiation. Screening by astrospheres is continually influenced by the passage of stars through the fluctuating density field of the interstellar medium (ISM). The most extreme events occur inside dense interstellar clouds, where the increased pressure may compress an astrosphere to a size smaller than the liquid-water habitable-zone distance.
View Article and Find Full Text PDFThe changing view of planets orbiting low mass stars, M stars, as potentially hospitable worlds for life and its remote detection was motivated by several factors, including the demonstration of viable atmospheres and oceans on tidally locked planets, normal incidence of dust disks, including debris disks, detection of planets with masses in the 5-20 M() range, and predictions of unusually strong spectral biosignatures. We present a critical discussion of M star properties that are relevant for the long- and short-term thermal, dynamical, geological, and environmental stability of conventional liquid water habitable zone (HZ) M star planets, and the advantages and disadvantages of M stars as targets in searches for terrestrial HZ planets using various detection techniques. Biological viability seems supported by unmatched very long-term stability conferred by tidal locking, small HZ size, an apparent short-fall of gas giant planet perturbers, immunity to large astrosphere compressions, and several other factors, assuming incidence and evolutionary rate of life benefit from lack of variability.
View Article and Find Full Text PDFStable, hydrogen-burning, M dwarf stars make up about 75% of all stars in the Galaxy. They are extremely long-lived, and because they are much smaller in mass than the Sun (between 0.5 and 0.
View Article and Find Full Text PDFCoupled one-dimensional photochemical-climate calculations have been performed for hypothetical Earth-like planets around M dwarfs. Visible/near-infrared and thermal-infrared synthetic spectra of these planets were generated to determine which biosignature gases might be observed by a future, space-based telescope. Our star sample included two observed active M dwarfs-AD Leo and GJ 643-and three quiescent model stars.
View Article and Find Full Text PDFHabitable planets will be subject to intense sources of ionizing radiation and fast particles from a variety of sources--from the host star to distant explosions--on a variety of timescales. Monte Carlo calculations of high-energy irradiation suggest that the surfaces of terrestrial-like planets with thick atmospheres (column densities greater than about 100 g cm(-2)) are well protected from directly incident X-rays and gamma-rays, but we find that sizeable fractions of incident ionizing radiation from astrophysical sources can be redistributed to biologically and chemically important ultraviolet wavelengths, a significant fraction of which can reach the surface. This redistribution is mediated by secondary electrons, resulting from Compton scattering and X-ray photoabsorption, the energies of which are low enough to excite and ionize atmospheric molecules and atoms, resulting in a rich aurora-like spectrum.
View Article and Find Full Text PDF