Publications by authors named "John S Savill"

Endogenous glucocorticoid action within cells is enhanced by prereceptor metabolism by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts intrinsically inert cortisone and 11-dehydrocorticosterone into active cortisol and corticosterone, respectively. 11β-HSD1 is highly expressed in immune cells elicited to the mouse peritoneum during thioglycollate-induced peritonitis and is down-regulated as the inflammation resolves. During inflammation, 11β-HSD1-deficient mice show enhanced recruitment of inflammatory cells and delayed acquisition of macrophage phagocytic capacity.

View Article and Find Full Text PDF

Since the discovery of cortisone in the 1940s and its early success in treatment of rheumatoid arthritis, glucocorticoids have remained the mainstay of anti-inflammatory therapies. However, cortisone itself is intrinsically inert. To be effective, it requires conversion to cortisol, the active glucocorticoid, by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1).

View Article and Find Full Text PDF

Mast cells are key initiators of allergic, anaphylactic and inflammatory reactions, producing mediators that affect vascular permeability, angiogenesis and fibrosis. Glucocorticoid pharmacotherapy reduces mast cell number, maturation and activation but effects at physiological levels are unknown. Within cells, glucocorticoid concentration is modulated by the 11β-hydroxysteroid dehydrogenases (11β-HSDs).

View Article and Find Full Text PDF

11β-Hydroxysteroid dehydrogenase type-1 (11β-HSD1) converts inert cortisone into active cortisol, amplifying intracellular glucocorticoid action. 11β-HSD1 deficiency improves cardiovascular risk factors in obesity but exacerbates acute inflammation. To determine the effects of 11β-HSD1 deficiency on atherosclerosis and its inflammation, atherosclerosis-prone apolipoprotein E-knockout (ApoE-KO) mice were treated with a selective 11β-HSD1 inhibitor or crossed with 11β-HSD1-KO mice to generate double knockouts (DKOs) and challenged with an atherogenic Western diet.

View Article and Find Full Text PDF

Glucocorticoids profoundly influence immune responses, and synthetic glucocorticoids are widely used clinically for their potent antiinflammatory effects. Endogenous glucocorticoid action is modulated by the two isozymes of 11β-hydroxysteroid dehydrogenase (11β-HSD). In vivo, 11β-HSD1 catalyzes the reduction of inactive cortisone or 11-dehydrocorticosterone into active cortisol or corticosterone, respectively, thereby increasing intracellular glucocorticoid levels.

View Article and Find Full Text PDF

Cortisone, a glucocorticoid hormone, was first used to treat rheumatoid arthritis in humans in the late 1940s, for which Hench, Reichstein and Kendall were awarded a Nobel Prize in 1950 and which led to the discovery of the anti-inflammatory effects of glucocorticoids. To be effective, the intrinsically inert cortisone must be converted to the active glucocorticoid, cortisol, by the intracellular action of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1). Whilst orally administered cortisone is rapidly converted to the active hormone, cortisol, by first pass metabolism in the liver, recent work has highlighted an anti-inflammatory role for 11beta-HSD1 within specific tissues, including in leukocytes.

View Article and Find Full Text PDF

The gastrointestinal tract is constantly challenged by foreign antigens and commensal bacteria but nonetheless is able to maintain a state of immunological quiescence. Recent advances have highlighted the importance of active suppression by regulatory lymphocytes and immunosuppressive cytokines in controlling mucosal immunity. Failures of these mechanisms contribute to the development of inflammatory bowel disease, but how these regulatory networks are established remains unclear.

View Article and Find Full Text PDF

Factors affecting platelet survival are poorly understood. To explore the hypothesis that platelet lifespan correlates with the lifespan of a key housekeeping process we subjected human platelets to in vitro incubation at 37 degrees C for 24 h to several days under hypoglycaemic conditions. Viability was assessed both by microscopy and flow cytometry using calcein-AM and/or FM4-64.

View Article and Find Full Text PDF

Glucocorticoids are widely used to treat chronic inflammatory conditions including rheumatoid arthritis. They promote mechanisms important for normal resolution of inflammation, notably macrophage phagocytosis of leukocytes undergoing apoptosis. Prereceptor metabolism of glucocorticoids by 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) amplifies intracellular levels of glucocorticoids by oxoreduction of intrinsically inert cortisone (in humans, 11-dehydrocorticosterone in mice) into active cortisol (corticosterone in mice) within cells expressing the enzyme.

View Article and Find Full Text PDF

Apoptosis is essential for clearance of potentially injurious inflammatory cells and subsequent efficient resolution of inflammation. Here we report that human neutrophils contain functionally active cyclin-dependent kinases (CDKs), and that structurally diverse CDK inhibitors induce caspase-dependent apoptosis and override powerful anti-apoptosis signals from survival factors such as granulocyte-macrophage colony-stimulating factor (GM-CSF). We show that the CDK inhibitor R-roscovitine (Seliciclib or CYC202) markedly enhances resolution of established neutrophil-dependent inflammation in carrageenan-elicited acute pleurisy, bleomycin-induced lung injury, and passively induced arthritis in mice.

View Article and Find Full Text PDF

Glucocorticoids promote macrophage phagocytosis of leukocytes undergoing apoptosis. Prereceptor metabolism of glucocorticoids by 11beta-hydroxysteroid dehydrogenases (11beta-HSDs) modulates cellular steroid action. 11beta-HSD type 1 amplifies intracellular levels of active glucocorticoids in mice by reactivating corticosterone from inert 11-dehydrocorticosterone in cells expressing the enzyme.

View Article and Find Full Text PDF

Glucocorticoids are widely used for their potent anti-inflammatory effects. Endogenous glucocorticoids are immunomodulatory and shape both adaptive and innate immune responses. Over the past decade, it has become apparent that an important level of control over endogenous glucocorticoid action is exerted by the 11beta-hydroxysteroid dehydrogenase enzymes.

View Article and Find Full Text PDF
Apoptosis in glomerulonephritis.

Curr Opin Nephrol Hypertens

July 2005

Purpose Of Review: Although glomerular cell apoptosis may be detrimental in acute and chronic inflammation, it is also a key component of the reparative glomerular remodelling that can follow injury. All glomerular cells are vulnerable to apoptosis although there are often differences in the nature of the initiating stimulus and the factors that are protective. The purpose of this review is to outline how modulation of this process may inhibit glomerular injury and promote tissue repair.

View Article and Find Full Text PDF

Apoptosis is of fundamental importance and plays a key role in determining the outcome of glomerulonephritis. Under ideal circumstances,apoptosis deletes infiltrating leukocytes and excess numbers of resident cells that are surplus to requirements, thereby facilitating tissue remodeling and the restoration of normal tissue architecture. Apoptosis also has a darker side, however, and may be responsible for the deletion of critically important resident glomerular cells, resulting in hypocellular scarring and loss of renal function.

View Article and Find Full Text PDF