Wireless and battery-free radio-frequency (RF) sensors can be used to create physical spaces that ambiently sense and respond to human activities. Making such sensors ultra-flexible and transparent is important to preserve the aesthetics of living environments, accommodate daily activities, and functionally integrate with objects. However, existing RF sensors are unable to simultaneously achieve high transparency, flexibility, and the electrical conductivity required for remote room-scale operation.
View Article and Find Full Text PDFAlternating-current electroluminescent fibres are promising candidates as light sources for smart textiles and soft machines. However, physical damage from daily use causes device deterioration or failure, making self-healable electroluminescent fibres attractive. In addition, soft robots could benefit from light-emitting combined with magnetically actuated functions.
View Article and Find Full Text PDFUsing photodynamic therapy (PDT) to treat deep-seated cancers is limited due to inefficient delivery of photosensitizers and low tissue penetration of light. Polymeric nanocarriers are widely used for photosensitizer delivery, while the self-quenching of the encapsulated photosensitizers would impair the PDT efficacy. Furthermore, the generated short-lived reactive oxygen spieces (ROS) can hardly diffuse out of nanocarriers, resulting in low PDT efficacy.
View Article and Find Full Text PDFWireless power transfer (WPT) within the human body can enable long-lasting medical devices but poses notable challenges, including absorption by biological tissues and weak coupling between the transmitter (Tx) and receiver (Rx). In pursuit of more robust and efficient wireless power, various innovative strategies have emerged to optimize power transfer efficiency (PTE). One such groundbreaking approach stems from the incorporation of metamaterials, which have shown the potential to enhance the capabilities of conventional WPT systems.
View Article and Find Full Text PDFAmbient sensors can continuously and unobtrusively monitor a person's health and well-being in everyday settings. Among various sensing modalities, wireless radio-frequency sensors offer exceptional sensitivity, immunity to lighting conditions, and privacy advantages. However, existing wireless sensors are susceptible to environmental interference and unable to capture detailed information from multiple body sites.
View Article and Find Full Text PDFMinimally-invasive and biocompatible implantable bioelectronic circuits are used for long-term monitoring of physiological processes in the body. However, there is a lack of methods that can cheaply and conveniently image the device within the body while simultaneously extracting sensor information. Magnetic Particle Imaging (MPI) with zero background signal, high contrast, and high sensitivity with quantitative images is ideal for this challenge because the magnetic signal is not absorbed with increasing tissue depth and incurs no radiation dose.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
Contactless sensors embedded in the ambient environment have broad applications in unobtrusive, long-term health monitoring for preventative and personalized healthcare. Microwave radar sensors are an attractive candidate for ambient sensing due to their high sensitivity to physiological motions, ability to penetrate through obstacles and privacy-preserving properties, but practical applications in complex real-world environments have been limited because of challenges associated with background clutter and interference. In this work, we propose a thin and soft textile sensor based on microwave metamaterials that can be easily integrated into ordinary furniture for contactless ambient monitoring of multiple cardiovascular signals in a localized manner.
View Article and Find Full Text PDFConventional pressure sensors rely on solid sensing elements. Instead, inspired by the air entrapment phenomenon on the surfaces of submerged lotus leaves, we designed a pressure sensor that uses the solid-liquid-liquid-gas multiphasic interfaces and the trapped elastic air layer to modulate capacitance changes with pressure at the interfaces. By creating an ultraslippery interface and structuring the electrodes at the nanoscale and microscale, we achieve near-friction-free contact line motion and thus near-ideal pressure-sensing performance.
View Article and Find Full Text PDFImplanted bioelectronic devices can form distributed networks capable of sensing health conditions and delivering therapy throughout the body. Current clinically-used approaches for wireless communication, however, do not support direct networking between implants because of signal losses from absorption and reflection by the body. As a result, existing examples of such networks rely on an external relay device that needs to be periodically recharged and constitutes a single point of failure.
View Article and Find Full Text PDFLoss and noise are usually undesirable in electronics and optics, which are generally mitigated by separate ways in the cost of bulkiness and complexity. Recent studies of non-Hermitian systems have shown a positive role of loss in various loss-induced counterintuitive phenomena, while noise still remains a fundamental challenge in non-Hermitian systems particularly for sensing and lasing. Here, we simultaneously reverse the detrimental loss and noise and reveal their coordinated positive role in nonlinear non-Hermitian resonators.
View Article and Find Full Text PDFNoise is a fundamental challenge for sensors deployed in daily environments for ambient sensing, health monitoring, and wireless networking. Current strategies for noise mitigation rely primarily on reducing or removing noise. Here, we introduce stochastic exceptional points and show the utility to reverse the detrimental effect of noise.
View Article and Find Full Text PDFHumans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited.
View Article and Find Full Text PDFLight has broad applications in medicine as a tool for diagnosis and therapy. Recent advances in optical technology and bioelectronics have opened opportunities for wearable, ingestible, and implantable devices that use light to continuously monitor health and precisely treat diseases. In this review, we discuss recent progress in the development and application of light-based bioelectronic devices.
View Article and Find Full Text PDFWearable strain sensors that detect joint/muscle strain changes become prevalent at human-machine interfaces for full-body motion monitoring. However, most wearable devices cannot offer customizable opportunities to match the sensor characteristics with specific deformation ranges of joints/muscles, resulting in suboptimal performance. Adequate wearable strain sensor design is highly required to achieve user-designated working windows without sacrificing high sensitivity, accompanied with real-time data processing.
View Article and Find Full Text PDFExtravasation is a common complication during intravenous therapy in which infused fluids leak into the surrounding tissues. Timely intervention can prevent severe adverse consequences, but early detection remains an unmet clinical need because existing sensors are not sensitive to leakage occurring in small volumes (< 200 μL) or at deep venipuncture sites. Here, an ultrathin bioimpedance microsensor array that can be integrated on intravenous needles for early and sensitive detection of extravasation is reported.
View Article and Find Full Text PDFWireless interfaces enable brain-implanted devices to remotely interact with the external world. They are critical components in modern research and clinical neurotechnologies and play a central role in determining their overall size, lifetime and functionality. Wireless interfaces use a wide range of modalities-including radio-frequency fields, acoustic waves and light-to transfer energy and data to and from an implanted device.
View Article and Find Full Text PDFElectronic textiles (e-textiles) are fabrics that can perform electronic functions such as sensing, computation, display, and communication. They can enhance the functionality of clothing in a variety of convenient and unobtrusive ways, thus have garnered significant research and commercial interest in applications ranging from fashion to healthcare. Recent advances in materials science and electronics have given rise to variety of e-textile components, including sensors, energy harvesters, batteries, and antennas on flexible and breathable textiles substrates.
View Article and Find Full Text PDFElectronic textiles capable of sensing, powering, and communication can be used to non-intrusively monitor human health during daily life. However, achieving these functionalities with clothing is challenging because of limitations in the electronic performance, flexibility and robustness of the underlying materials, which must endure repeated mechanical, thermal and chemical stresses during daily use. Here, we demonstrate electronic textile systems with functionalities in near-field powering and communication created by digital embroidery of liquid metal fibers.
View Article and Find Full Text PDFPhotochemical internalization (PCI) is a promising intervention using photodynamic therapy (PDT) to enhance the activity of chemotherapeutic drugs. However, current bladder cancer treatments involve high-dose chemotherapy and high-irradiance PDT which cause debilitating side effects. Moreover, low penetration of light and drugs in target tissues and cumbersome light delivery procedures hinder the clinical utility of PDT and chemotherapy combination for PCI.
View Article and Find Full Text PDFLymphocytes play a vital role in immunosurveillance through sensing biomolecules and eliminating targeted invaders. Compared with conventional therapies that depend on drug loading, lymphocytes are advantageous as they are able to ensure self-regulated therapeutics. Here, novel multi-compartmental DNA hydrogel particles were synthesized using a microfluidic assembly for intelligent cancer treatment the logic-based control of siRNA release without external stimulation.
View Article and Find Full Text PDFThe confluence of wireless technology and biosensors offers the possibility to detect and manage medical conditions outside of clinical settings. Wound infections represent a major clinical challenge in which timely detection is critical for effective interventions, but this is currently hindered by the lack of a monitoring technology that can interface with wounds, detect pathogenic bacteria, and wirelessly transmit data. Here, we report a flexible, wireless, and battery-free sensor that provides smartphone-based detection of wound infection using a bacteria-responsive DNA hydrogel.
View Article and Find Full Text PDFWearable optoelectronic devices can interface with the skin for applications in continuous health monitoring and light-based therapy. Measurement of the thermal effect of light on skin is often critical to track physiological parameters and control light delivery. However, accurate measurement of light-induced thermal effects is challenging because conventional sensors cannot be placed on the skin without obstructing light delivery.
View Article and Find Full Text PDFMonitoring surgical wounds post-operatively is necessary to prevent infection, dehiscence and other complications. However, the monitoring of deep surgical sites is typically limited to indirect observations or to costly radiological investigations that often fail to detect complications before they become severe. Bioelectronic sensors could provide accurate and continuous monitoring from within the body, but the form factors of existing devices are not amenable to integration with sensitive wound tissues and to wireless data transmission.
View Article and Find Full Text PDF