Noninvasive measures of limb muscle strength are quite useful in preclinical translational studies that use mouse models of muscle disease, peripheral nerve disease, and movement disorders. The present study uses a simple protocol for assessing both inter-trial and inter-examiner reliability for two noninvasive methods of assessing limb strength in dystrophic (mdx) and wild type mice. One method, termed the whole body tension (WBT) method or escape test, measures the total phasic pulling tension exerted by the fore- and hindlimbs while a mouse attempts to escape into a darkened tube.
View Article and Find Full Text PDFDystrophin-deficient muscle exhibits substantial increases in nuclear NF-kappaB activation. To examine potential mechanisms for this enhanced activation, the present study employs conventional Western blot techniques to provide the first determination of the relative expression of NF-kappaB signaling molecules in adult nondystrophic and dystrophic (mdx) skeletal muscle. The results indicate that dystrophic muscle is characterized by increases in the whole cell expression of IkappaB-alpha, p65, p50, RelB, p100, p52, IKK, and TRAF-3.
View Article and Find Full Text PDFThe whole body tension (WBT) method was used to evaluate the hypothesis that long term treatment with NF-kappaB inhibitors improves the total forward pulling tension exerted by the limb musculature of the mdx mouse. Mdx mice exhibited significantly reduced WBT values and more profound weakening during the course of generating multiple forward pulling movements than age-matched nondystrophic mice. Long term treatment with the NF-kappaB inhibitor pyrrolidine dithiocarbamate (PDTC) did not significantly reduce nuclear p65 activation in the costal diaphragm, but increased WBT by 12% in mature (12 month) mice.
View Article and Find Full Text PDFPrevious studies have shown that systemic administration of cocaine transiently alters stimulus-evoked responses of ventral posteromedial (VPM) thalamic neurons. Results from these single-unit electrophysiological studies revealed that cocaine was equally likely to augment or attenuate the magnitude of sensory evoked responses following threshold level stimulation of peripheral receptive fields. In an attempt to clarify the impact of cocaine administration on sensory signal processing, we examined the drug's effects on responses of individual neurons and ensembles of VPM thalamic neurons to sensory stimuli, and performance of subjects in a sensory detection behavioural task.
View Article and Find Full Text PDF