Nowcasting is a term originating from economics, finance, and meteorology. It refers to the process of determining the uncertain state of the economy, markets or the weather at the current time by indirect means. In this paper, we describe a simple two-parameter data analysis that reveals hidden order in otherwise seemingly chaotic earthquake seismicity.
View Article and Find Full Text PDFThe last 12 months have provided further evidence of the potential for cascading ecological and socio-political crises that were warned of 12 months ago. Then a consensus statement from the Regional Action on Climate Change Symposium warned: "the Earth's climatic, ecological, and human systems are converging towards a crisis that threatens to engulf global civilization within the lifetimes of children now living." Since then, the consequences of a broad set of extreme climate events (notably droughts, floods, and fires) have been compounded by interaction with impacts from multiple pandemics (including COVID-19 and cholera) and the Russia-Ukraine war.
View Article and Find Full Text PDFGeoGateway (http://geo-gateway.org) is a web-based interface for analysis and modeling of geodetic imaging data and to support response to related disasters. Geodetic imaging data product currently supported by GeoGateway include Global Navigation Satellite System (GNSS) daily position time series and derived velocities and displacements and airborne Interferometric Synthetic Aperture Radar (InSAR) from NASA's UAVSAR platform.
View Article and Find Full Text PDFWe present a data-driven approach to clustering or grouping Global Navigation Satellite System (GNSS) stations according to observed velocities, displacements or other selected characteristics. Clustering GNSS stations provides useful scientific information, and is a necessary initial step in other analysis, such as detecting aseismic transient signals (Granat et al., 2013, https://doi.
View Article and Find Full Text PDFEarth Space Sci
September 2021
Interferometric synthetic aperture radar (InSAR) interferograms contain valuable information about the fault systems hidden beneath the surface of the Earth. In a new approach, we aim to fit InSAR ground deformation data using a distribution of multiple seismic point sources whose parameters are found by a genetic algorithm. The resulting source distribution could provide another useful tool in solving the difficult problem of accurately mapping earthquake faults.
View Article and Find Full Text PDFCharles Richter's observation that 'only fools and charlatans predict earthquakes,' reflects the fact that despite more than 100 years of effort, seismologists remain unable to do so with reliable and accurate results. Meaningful prediction involves specifying the location, time, and size of an earthquake before it occurs to greater precision than expected purely by chance from the known statistics of earthquakes in an area. In this context, 'forecasting' implies a prediction with a specification of a probability of the time, location, and magnitude.
View Article and Find Full Text PDFInvasion percolation is a model that was originally proposed to describe growing networks of fractures. Here we describe a loopless algorithm on random lattices, coupled with an avalanche-based model for bursts. The model reproduces the characteristic b-value seismicity and spatial distribution of bursts consistent with earthquakes resulting from hydraulic fracturing ("fracking").
View Article and Find Full Text PDFWe analyze a new model for growing networks, the constrained Leath invasion percolation model. Cluster dynamics are characterized by bursts in space and time. The model quantitatively reproduces the observed frequency-magnitude scaling of earthquakes in the limit that the occupation probability approaches the critical bond percolation probability in d=2.
View Article and Find Full Text PDFSeismic nowcasting uses counts of small earthquakes as proxy data to estimate the current dynamical state of an earthquake fault . The result is an earthquake potential score that characterizes the current state of progress of a defined geographic region through its nominal earthquake "cycle." The count of small earthquakes since the last large earthquake is the that has elapsed since the last large earthquake (Varotsos et al.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
November 2018
A standard approach to quantifying the seismic hazard is the relative intensity (RI) method. It is assumed that the rate of seismicity is constant in time and the rate of occurrence of small earthquakes is extrapolated to large earthquakes using Gutenberg-Richter scaling. We introduce nowcasting to extend RI forecasting to time-dependent seismicity, for example, during an aftershock sequence.
View Article and Find Full Text PDFTectonic motion across the Los Angeles region is distributed across an intricate network of strike-slip and thrust faults that will be released in destructive earthquakes similar to or larger than the 1933 6.4 Long Beach and 1994 6.7 Northridge events.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2014
Recent developments in hydraulic fracturing (fracking) have enabled the recovery of large quantities of natural gas and oil from old, low-permeability shales. These developments include a change from low-volume, high-viscosity fluid injection to high-volume, low-viscosity injection. The injected fluid introduces distributed damage that provides fracture permeability for the extraction of the gas and oil.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2012
Many driven threshold systems display a spectrum of avalanche event sizes, often characterized by power-law scaling. An important problem is to compute probabilities of the largest events ("Black Swans"). We develop a data-driven approach to the problem by transforming to the event index frame, and relating this to Shannon information.
View Article and Find Full Text PDFThe Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California was the first competitive evaluation of forecasts of future earthquake occurrence. Participants submitted expected probabilities of occurrence of M ≥ 4.95 earthquakes in 0.
View Article and Find Full Text PDFObservations suggest that contemporary wildfire suppression practices in the United States have contributed to conditions that facilitate large, destructive fires. We introduce a forest-fire model with natural fire resistance that supports this theory. Fire resistance is defined with respect to the size and shape of clusters; the model yields power-law frequency-size distributions of model fires that are consistent with field observations in the United States, Canada, and Australia.
View Article and Find Full Text PDFEarthquake occurrence in nature is thought to result from correlated elastic stresses, leading to clustering in space and time. We show that the occurrence of major earthquakes in California correlates with time intervals when fluctuations in small earthquakes are suppressed relative to the long term average. We estimate a probability of less than 1% that this coincidence is due to random clustering.
View Article and Find Full Text PDFIn this work the distribution of interoccurrence times between earthquakes in aftershock sequences is analyzed and a model based on a nonhomogeneous Poisson (NHP) process is proposed to quantify the observed scaling. In this model the generalized Omori's law for the decay of aftershocks is used as a time-dependent rate in the NHP process. The analytically derived distribution of interoccurrence times is applied to several major aftershock sequences in California to confirm the validity of the proposed hypothesis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2002