Publications by authors named "John Roeske"

Introduction: A neural network was trained to accurately predict the entire single-event specific energy spectra for use in alpha-particle microdosimetry calculations.

Methods: The network consisted of 4 inputs and 21 outputs and was trained on data calculated using Monte Carlo simulation where input parameters originated both from previously published data as well as randomly generated parameters that fell within a target range. The 4 inputs consisted of the source-target configuration (consisting of both cells in suspension and in tissue-like geometries), alpha particle energy (3.

View Article and Find Full Text PDF

The accuracy of artificial intelligence (AI) generated contours for intact-breast and post-mastectomy radiotherapy plans was evaluated. Geometric and dosimetric comparisons were performed between auto-contours (ACs) and manual-contours (MCs) produced by physicians for target structures. Breast and regional nodal structures were manually delineated on 66 breast cancer patients.

View Article and Find Full Text PDF

Objective: We report an updated analysis of the outcomes and toxicities of MRI-based brachytherapy for locally advanced cervical cancer from a U.S. academic center.

View Article and Find Full Text PDF

Background: Dual-energy (DE)-CBCT represents a promising imaging modality that can produce virtual monoenergetic (VM) CBCT images. VM images, which provide enhanced contrast and reduced imaging artifacts, can be used to assist in soft-tissue visualization during image-guided radiotherapy.

Purpose: This work reports the development of TIGRE-DE, a module in the open-source TIGRE toolkit for the performance of DE-CBCT and the production of VM CBCT images.

View Article and Find Full Text PDF
Article Synopsis
  • Doctors use special scans like CT and MRI to help with prostate cancer treatment.
  • They created a computer program called PxCGAN that makes fake MRI images from CT scans to help when they can't use MRI.
  • Tests showed that these fake MRIs (sMRI) are just as good at showing the prostate as real MRIs (rMRI), which helps doctors treat patients better.
View Article and Find Full Text PDF

Purpose: Target and organ delineation during prostate high-dose-rate (HDR) brachytherapy treatment planning can be improved by acquiring both a postimplant CT and MRI. However, this leads to a longer treatment delivery workflow and may introduce uncertainties due to anatomical motion between scans. We investigated the dosimetric and workflow impact of MRI synthesized from CT for prostate HDR brachytherapy.

View Article and Find Full Text PDF

Purpose: To determine the effect of megavoltage (MV) scatter on the accuracy of markerless tumor tracking (MTT) for lung tumors using dual energy (DE) imaging and to consider a post-processing technique to mitigate the effects of MV scatter on DE-MTT.

Methods: A Varian TrueBeam linac was used to acquire a series of interleaved 60/120 kVp images of a motion phantom with simulated tumors (10 and 15 mm diameter). Two sets of consecutive high/low energy projections were acquired, with and without MV beam delivery.

View Article and Find Full Text PDF

Purpose: To evaluate the impact of various noise reduction algorithms and template matching parameters on the accuracy of markerless tumor tracking (MTT) using dual-energy (DE) imaging.

Methods: A Varian TrueBeam linear accelerator was used to acquire a series of alternating 60 and 120 kVp images (over a 180° arc) using fast kV switching, on five early-stage lung cancer patients. Subsequently, DE logarithmic weighted subtraction was performed offline on sequential images to remove bone.

View Article and Find Full Text PDF

A shallow neural network was trained to accurately calculate the microdosimetric parameters, 〈〉 and 〈〉 (the first and second moments of the single-event specific energy spectra, respectively) for use in alpha-particle microdosimetry calculations. The regression network of four inputs and two outputs was created in MATLAB and trained on a data set consisting of both previously published microdosimetric data and recent Monte Carlo simulations. The input data consisted of the alpha-particle energies (3.

View Article and Find Full Text PDF

Purpose: Lung stereotactic ablative body radiotherapy (SABR) is a radiation therapy success story with level 1 evidence demonstrating its efficacy. To provide real-time respiratory motion management for lung SABR, several commercial and preclinical markerless lung target tracking (MLTT) approaches have been developed. However, these approaches have yet to be benchmarked using a common measurement methodology.

View Article and Find Full Text PDF

The goal of this study is to fully automate the treatment planning and delivery process of hippocampal-sparing whole brain irradiation (HS-WBRT) by combining a RapidPlan (RP) knowledge-based planning model and HyperArc (HA) technology. Additionally, this study compares the dosimetric performance of RapidPlan-HyperArc (RP-HA) treatment plans with RP plans and volumetric modulated arc therapy (VMAT) plans. Ten patients previously treated with HS-WBRT using conventional VMAT were re-planned using RP-HA technique and RP model for HS-WBRT.

View Article and Find Full Text PDF

We investigated skin dose enhancements of brass mesh bolus (BMB) and a recently developed transparent polymer-gel bolus (PGB) for clinically relevant breast treatment delivery techniques. The dose enhancement of the breast surface with BMB and PGB were compared to that of tissue-equivalent bolus. Three breast treatment plans were generated on CT scans of an anthropomorphic chest phantom: tangential step-and-shoot 3D conformal (3DCRT) planned using Field-in-Field (FiF), tangential sliding-window 3DCRT using Electronic Compensator (EC), and volumetric modulated arc therapy (VMAT).

View Article and Find Full Text PDF

We performed Monte Carlo simulations in order to determine, by means of microdosimetry calculations, tumour control probability (TCP) curves for treatments with Ac-PSMA of metastatic castration resistant prostate cancer (mCRPC). Realistic values of cell radiosensitivity, nucleus size and lesion size were used for calculations. As the cell radiosensitivity decreased, the nucleus size decreased and the lesion size increased, the absorbed dose to reach a given TCP increased.

View Article and Find Full Text PDF

Purpose: To describe and characterize fast-kV switching, dual-energy (DE) imaging implemented within the on-board imager of a commercial linear accelerator for markerless tumor tracking (MTT).

Methods And Materials: Fast-kV switching, DE imaging provides for rapid switching between programmed tube voltages (ie, 60 and 120 kVp) from one image frame to the next. To characterize this system, the weighting factor used for logarithmic subtraction and signal difference-to-noise ratio were analyzed as a function of time and frame rate.

View Article and Find Full Text PDF

Purpose: MRI is the gold-standard imaging modality for brain tumor diagnosis and delineation. The purpose of this work was to investigate the feasibility of performing brain stereotactic radiosurgery (SRS) with a 0.35 T MRI-guided linear accelerator (MRL) equipped with a double-focused multileaf collimator (MLC).

View Article and Find Full Text PDF

Aim/objectives/background: The American College of Radiology (ACR) and the American Society for Radiation Oncology (ASTRO) have jointly developed the following practice parameter for image-guided radiation therapy (IGRT). IGRT is radiation therapy that employs imaging to maximize accuracy and precision throughout the entire process of treatment delivery with the goal of optimizing accuracy and reliability of radiation therapy to the target, while minimizing dose to normal tissues.

Methods: The ACR-ASTRO Practice Parameter for IGRT was revised according to the process described on the ACR website ("The Process for Developing ACR Practice Parameters and Technical Standards," www.

View Article and Find Full Text PDF

Purpose: Although stereotactic body radiation therapy (SBRT) is an attractive noninvasive approach for liver irradiation, it presents specific challenges associated with respiration-induced liver motion, daily tumor localization due to liver deformation, and poor visualization of target with respect to adjacent normal liver in computed tomography (CT). We aim to identify potential hazards and develop a set of mitigation strategies to improve the safety of our liver SBRT program, using failure mode and effect analysis (FMEA).

Materials And Methods: A multidisciplinary group consisting of two physicians, three physicists, two dosimetrists, and two therapists was formed.

View Article and Find Full Text PDF

Purpose: To present a novel method, based on convolutional neural networks (CNN), to automate weighted log subtraction (WLS) for dual-energy (DE) fluoroscopy to be used in conjunction with markerless tumor tracking (MTT).

Methods: A CNN was developed to automate WLS (aWLS) of DE fluoroscopy to enhance soft tissue visibility. Briefly, this algorithm consists of two phases: training a CNN architecture to predict pixel-wise weighting factors followed by application of WLS subtraction to reduce anatomical noise.

View Article and Find Full Text PDF

To evaluate fast-kV switching (FS) dual energy (DE) cone beam computed tomography (CBCT) using the on-board imager (OBI) of a commercial linear accelerator to produce virtual monoenergetic (VM) and relative electron density (RED) images. Using an polynomial attenuation mapping model, CBCT phantom projections obtained at 80 and 140 kVp with FS imaging, were decomposed into equivalent thicknesses of aluminum (Al) and polymethyl methacrylate (PMMA). All projections were obtained with the titanium foil and bowtie filter in place.

View Article and Find Full Text PDF

We developed a quality assurance (QA) method to determine the isocenter congruence of Optical Surface Monitoring System (OSMS, Varian, CA, USA), kilovoltage (kV), and megavoltage (MV) imaging, and the radiation isocenter using a single setup of the OSMS phantom for frameless Stereotactic Radiosurgery (SRS) treatment. After aligning the phantom to the OSMS isocenter, a cone-beam computed tomography (CBCT) of the phantom was acquired and registered to a computed tomography (CT) scan of the phantom to determine the CBCT isocenter. Without moving the phantom, MV and kV images were simultaneously acquired at four gantry angles to localize MV and kV isocenters.

View Article and Find Full Text PDF

Purpose: Our peer-review program previously consisted of weekly chart rounds performed before the end of the first week of treatment. In order to perform peer review before the start of treatment when possible, we implemented daily prospective contouring and planning rounds (CPR).

Methods And Materials: At the time of computed tomography simulation, patients were categorized by the treating physician into 5 treatment groups based on urgency and complexity (ie, standard, urgent, palliative nonemergent, emergent, and special procedures).

View Article and Find Full Text PDF

Purpose: To evaluate markerless tumor tracking (MTT) using fast-kV switching dual-energy (DE) fluoroscopy on a bench top system.

Methods: Fast-kV switching DE fluoroscopy was implemented on a bench top which includes a turntable stand, flat panel detector, and x-ray tube. The customized generator firmware enables consecutive x-ray pulses that alternate between programmed high and low energies (e.

View Article and Find Full Text PDF

Purpose: We transitioned from a low-dose-rate (LDR) to a high-dose-rate (HDR) prostate brachytherapy program. The objective of this study was to describe our experience developing a prostate HDR program, compare the LDR and HDR dosimetry, and identify the impact of several targeted interventions in the HDR workflow to improve efficiency.

Methods And Materials: We performed a retrospective cohort study of patients treated with LDR or HDR prostate brachytherapy.

View Article and Find Full Text PDF

Dual-energy (DE) imaging using planar imaging with an on-board imager (OBI) is being considered in radiotherapy. We describe here a custom phantom designed to optimize DE imaging parameters using the OBI of a commercial linear accelerator. The phantom was constructed of lung-, tissue- and bone-equivalent material slabs.

View Article and Find Full Text PDF

Template-based matching algorithms are currently being considered for markerless motion tracking of lung tumors. These algorithms use tumor templates derived from the planning CT scan, and track the motion of the tumor on single energy fluoroscopic images obtained at the time of treatment. In cases where bone may obstruct the view of the tumor, dual energy fluoroscopy may be used to enhance soft tissue contrast.

View Article and Find Full Text PDF