Publications by authors named "John Richard Apps"

Craniopharyngiomas (CPs) are clinically aggressive tumors because of their invasive behavior and recalcitrant tendency to recur after therapy. There are 2 types based on their distinct histology and molecular features: the papillary craniopharyngioma (PCP), which is associated with BRAF-V600E mutations and the adamantinomatous craniopharyngioma (ACP), characterized by mutations in CTNNB1 (encoding β-catenin). Patients with craniopharyngioma show symptoms linked to the location of the tumor close to the optic pathways, hypothalamus, and pituitary gland, such as increased intracranial pressure, endocrine deficiencies, and visual defects.

View Article and Find Full Text PDF

Senescent cells activate genetic programmes that irreversibly inhibit cellular proliferation, but also endow these cells with distinctive metabolic and signalling phenotypes. Although senescence has historically been considered a protective mechanism against tumourigenesis, the activities of senescent cells are increasingly being associated with age-related diseases, including cancer. An important feature of senescent cells is the secretion of a vast array of pro-inflammatory cytokines, chemokines, and growth factors collectively known as the senescence-associated secretory phenotype (SASP).

View Article and Find Full Text PDF

Adamantinomatous craniopharyngioma (ACP) is the commonest tumor of the sellar region in childhood. Two genetically engineered mouse models have been developed and are giving valuable insights into ACP biology. These models have identified novel pathways activated in tumors, revealed an important function of paracrine signalling and extended conventional theories about the role of organ-specific stem cells in tumorigenesis.

View Article and Find Full Text PDF

Since the first identification of CTNNB1 mutations in adamantinomatous craniopharyngioma (ACP), much has been learned about the molecular pathways and processes that are disrupted in ACP pathogenesis. To date this understanding has not translated into tangible patient benefit. The recent development of novel techniques and a range of preclinical models now provides an opportunity to begin to support treatment decisions and develop new therapeutics based on molecular pathology.

View Article and Find Full Text PDF