Publications by authors named "John R Zullo"

Purpose: To measure the neutron dose equivalent per therapeutic proton dose (H/D) in a passive scattering proton therapy system and study its dependence on the proton energy, aperture-to-isocenter distance, spread-out Bragg peak (SOBP) width, and field size.

Methods And Materials: We performed four experiments of varying proton energies, aperture-to-isocenter distances, SOBP widths, and field sizes. Etched track detectors were used to measure the neutron dose equivalent at both an in-field (isocenter, beyond the protons' range) and out-of-field (30 cm lateral to the isocenter) location in air.

View Article and Find Full Text PDF

In the region of high-dose gradients at the end of the proton range, the stopping power ratio of the protons undergoes significant changes, allowing for a broad spectrum of proton energies to be deposited within a relatively small volume. Because of the potential linear energy transfer dependence of LiF TLD-100 (thermolumescent dosimeter), dose measurements made in the distal fall-off region of a proton beam may be less accurate than those made in regions of low-dose gradients. The purpose of this study is to determine the accuracy and precision of dose measured using TLD-100 for a pristine Bragg peak, particularly in the distal fall-off region.

View Article and Find Full Text PDF

The number of proton and carbon ion therapy centers is increasing; however, since the publication of the International Commission on Radiation Units and Measurements report, there has been no dedicated report dealing with proton therapy quality assurance. The purpose of this article is to describe the quality assurance procedures performed on the passively scattered proton therapy beams at The University of Texas M. D.

View Article and Find Full Text PDF

Computed tomography (CT) scanners are used in hospitals worldwide for radiation oncology treatment simulation. It is critical that the process very accurately represents the patient positioning to be used during the administration of radiation therapy to minimize the dose delivery to normal tissue. Unfortunately, this is not always the case.

View Article and Find Full Text PDF

Computed radiography (CR) plates are currently used in radiation therapy clinics to acquire digital radiographic images for the purpose of verifying the treatment field size, shape, and location. Each CR plate may be used numerous times, and the use of these digital images allows for easy storage and retrieval of patient data. Over prolonged repeat exposures of the CR plates, however, the image quality begins to degrade, making it increasingly more difficult for the therapists and physicians to determine where one anatomical structure begins, and the other ends.

View Article and Find Full Text PDF