Circulating tumor cell (CTC)-based liquid biopsies provide unique opportunities for cancer diagnostics, treatment selection, and response monitoring, but even with advanced microfluidic technologies for rare cell detection the very low number of CTCs in standard 10-mL peripheral blood samples limits their clinical utility. Clinical leukapheresis can concentrate mononuclear cells from almost the entire blood volume, but such large numbers and concentrations of cells are incompatible with current rare cell enrichment technologies. Here, we describe an ultrahigh-throughput microfluidic chip, CTC-iChip, that rapidly sorts through an entire leukapheresis product of over 6 billion nucleated cells, increasing CTC isolation capacity by two orders of magnitude (86% recovery with 10 enrichment).
View Article and Find Full Text PDFCirculating tumor cells (CTCs) are extremely rare in the blood, yet they account for metastasis. Notably, it was reported that CTC clusters (CTCCs) can be 50-100 times more metastatic than single CTCs, making them particularly salient as a liquid biopsy target. Yet they can split apart and are even rarer, complicating their recovery.
View Article and Find Full Text PDFPurpose: The T790M gatekeeper mutation in the EGFR is acquired by some EGFR-mutant non-small cell lung cancers (NSCLC) as they become resistant to selective tyrosine kinase inhibitors (TKI). As third-generation EGFR TKIs that overcome T790M-associated resistance become available, noninvasive approaches to T790M detection will become critical to guide management.
Experimental Design: As part of a multi-institutional Stand-Up-To-Cancer collaboration, we performed an exploratory analysis of 40 patients with EGFR-mutant tumors progressing on EGFR TKI therapy.
Circulating tumor cells (CTCs) are shed into the bloodstream from primary and metastatic tumor deposits. Their isolation and analysis hold great promise for the early detection of invasive cancer and the management of advanced disease, but technological hurdles have limited their broad clinical utility. We describe an inertial focusing-enhanced microfluidic CTC capture platform, termed "CTC-iChip," that is capable of sorting rare CTCs from whole blood at 10(7) cells/s.
View Article and Find Full Text PDFA new imaging device, termed a "cryomacroscope", is presented in this report. This device is designed to assist in exploring thermal and mechanical effects associated with large-scale vitrification and crystallization, with the current setup aimed at the range of 50 μm to 2 cm. The cryomacroscope is not intended as a substitute for the cryomicroscope, but as a complementary tool for the cryobiologist.
View Article and Find Full Text PDFBackground: Experimental data and a complementary biophysical model are presented to describe the dynamic response of a unicellular microalga to osmotic processes encountered during cryopreservation.
Method Of Approach: Chlorococcum texanum (C. texanum) were mounted on a cryoperfusion microscope stage and exposed sequentially to various solutions of sucrose and methanol.
Nitrogen loss by leaching is a major problem, particularly with crops requiring large amounts of N fertilizer. We evaluated the effect of N fertilization and irrigation on residual soil nitrate following potato (Solanum tuberosum L.) harvests in the upper St-John River valley of New Brunswick, Canada.
View Article and Find Full Text PDF