In turbulent flows, kinetic energy is transferred from the largest scales to progressively smaller scales, until it is ultimately converted into heat. The Navier-Stokes equations are almost universally used to study this process. Here, by comparing with molecular-gas-dynamics simulations, we show that the Navier-Stokes equations do not describe turbulent gas flows in the dissipation range because they neglect thermal fluctuations.
View Article and Find Full Text PDFAn experimental apparatus has been developed to determine thermal accommodation coefficients for a variety of gas-surface combinations. Results are obtained primarily through measurement of the pressure dependence of the conductive heat flux between parallel plates separated by a gas-filled gap. Measured heat-flux data are used in a formula based on Direct Simulation Monte Carlo (DSMC) simulations to determine the coefficients.
View Article and Find Full Text PDFRecently proposed molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction-rate information) are investigated for chemical reactions occurring in upper-atmosphere hypersonic flows.
View Article and Find Full Text PDF