We investigated the interplay of matrix dynamics with the molecular dynamics of a thermally activated delayed fluorescence (TADF) emitter, NAI-DMAC, to identify factors that influence the photophysical processes leading to TADF. The matrix dynamics surrounding NAI-DMAC molecules were varied continuously from the liquid to the solid state by depositing toluene solutions containing poly(methyl methacrylate) (PMMA) and NAI-DMAC onto optical substrates. We monitored changes of the NAI-DMAC emission as the liquid films dried to form solid PMMA films using temperature- and time-resolved photoluminescence spectroscopy.
View Article and Find Full Text PDFWe investigate the role of molecular dynamics in the luminescent properties of a prototypical thermally activated delayed fluorescence (TADF) emitter, NAI-DMAC, in solution using a combination of temperature dependent time-resolved photoluminescence and absorption spectroscopies. We use a glass forming liquid, 2-methylfuran, to introduce an abrupt change in the temperature dependent diffusion dynamics of the solvent and examine the influence this has on the emission intensity of NAI-DMAC molecules. Comparison of experiment with first principles molecular dynamics simulations reveals that the emission intensity of NAI-DMAC molecules follows the temperature-dependent self-diffusion dynamics of the solvent.
View Article and Find Full Text PDFThe role of dipolar motion of organic cations in the A-sites of halide perovskites has been debated in an effort to understand why these materials possess such remarkable properties. Here, we show that the dipolar motion of cations such as methylammonium (MA) or formamidinium (FA) versus cesium (Cs) does not influence large polaron binding energies, delocalization lengths, formation times, or bimolecular recombination lifetimes in lead bromide perovskites containing only one type of A-site cation. We directly probe the transient absorption spectra of large polarons throughout the entire mid-infrared and resolve their dynamics on time scales from sub-100 fs to sub-μs using time-resolved mid-infrared spectroscopy.
View Article and Find Full Text PDFWe use native vibrational modes of the model singlet fission chromophore 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-Pn) to examine the origins of singlet fission in solution between molecules that are not tethered by a covalent linkage. We use the C-H stretch modes of TIPS side groups of TIPS-Pn to demonstrate that singlet fission does not occur by diffusive encounter of independent molecules in solution. Instead, TIPS-Pn molecules aggregate in solution through their TIPS side groups.
View Article and Find Full Text PDF