Unlabelled: Streams impacted by historic mining activity are characterized by acidic pH, unique microbial communities, and abundant metal-oxide precipitation, all of which can influence groundwater-surface water exchange. We investigate how metal-oxide precipitates and hyporheic mixing mediate the composition of microbial communities in two streams receiving acid-rock and mine drainage near Silverton, Colorado, USA. A large, neutral pH hyporheic zone facilitated the precipitation of metal particles/colloids in hyporheic porewaters.
View Article and Find Full Text PDFCharacterizing seasonal changes in diatom community profiles in coastal environments is scarce worldwide. Despite diatoms being prevalent in microfouling, their role in microbially influenced corrosion of metallic materials remains poorly understood. This study reports the effect of seasonal variations on the settlement of marine diatoms and corrosion of 316 L stainless steel surfaces exposed to Chilean coastal seawater.
View Article and Find Full Text PDFThe generation of hydrogen and reduced carbon compounds during serpentinization provides sustained energy for microorganisms on Earth, and possibly on other extraterrestrial bodies (e.g., Mars, icy satellites).
View Article and Find Full Text PDFSerpentinization reactions produce highly reduced waters that have hyperalkaline pH and that can have high concentrations of H and CH. Putatively autotrophic methanogenic archaea have been identified in the subsurface waters of the Samail Ophiolite, Sultanate of Oman, though the strategies to overcome hyperalkaline pH and dissolved inorganic carbon limitation remain to be fully understood. Here, we recovered metagenome assembled genomes (MAGs) and applied a metapangenomic approach to three different populations to assess habitat-specific functional gene distribution.
View Article and Find Full Text PDFSteep Cone Geyser is a unique geothermal feature in Yellowstone National Park (YNP), Wyoming, actively gushing silicon-rich fluids along outflow channels possessing living and actively silicifying microbial biomats. To assess the geomicrobial dynamics occurring temporally and spatially at Steep Cone, samples were collected at discrete locations along one of Steep Cone's outflow channels for both microbial community composition and aqueous geochemistry analysis during field campaigns in 2010, 2018, 2019, and 2020. Geochemical analysis characterized Steep Cone as an oligotrophic, surface boiling, silicious, alkaline-chloride thermal feature with consistent dissolved inorganic carbon and total sulfur concentrations down the outflow channel ranging from 4.
View Article and Find Full Text PDFNitrogen (N) is an essential element for life. N compounds such as ammonium ( ) may act as electron donors, while nitrate ( ) and nitrite ( ) may serve as electron acceptors to support energy metabolism. However, little is known regarding the availability and forms of N in subsurface ecosystems, particularly in serpentinite-hosted settings where hydrogen (H) generated through water-rock reactions promotes habitable conditions for microbial life.
View Article and Find Full Text PDFThe process of serpentinization supports life on Earth and gives rise to the habitability of other worlds in our Solar System. While numerous studies have provided clues to the survival strategies of microbial communities in serpentinizing environments on the modern Earth, characterizing microbial activity in such environments remains challenging due to low biomass and extreme conditions. Here, we used an untargeted metabolomics approach to characterize dissolved organic matter in groundwater in the Samail Ophiolite, the largest and best characterized example of actively serpentinizing uplifted ocean crust and mantle.
View Article and Find Full Text PDFSoil spatial responses to fire are unclear. Using optical chemical sensing with planar 'optodes', pH and dissolved O concentration were tracked spatially with a resolution of 360 μm per pixel for 72 h after burning soil in the laboratory with a butane torch (∼1300 °C) and then sprinkling water to simulate a postfire moisture event. Imaging data from planar optodes correlated with microbial activity (quantified via RNA transcripts).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2022
Little is known of acetogens in contemporary serpentinizing systems, despite widely supported theories that serpentinite-hosted environments supported the first life on Earth via acetogenesis. To address this knowledge gap, genome-resolved metagenomics was applied to subsurface fracture water communities from an area of active serpentinization in the Samail Ophiolite, Sultanate of Oman. Two deeply branching putative bacterial acetogen types were identified in the communities belonging to the Acetothermia (hereafter, types I and II) that exhibited distinct distributions among waters with lower and higher water-rock reaction (i.
View Article and Find Full Text PDFWildfires are a perennial event globally, and the biogeochemical underpinnings of soil responses at relevant spatial and temporal scales are unclear. Soil biogeochemical processes regulate plant growth and nutrient losses that affect water quality, yet the response of soil after variable intensity fire is difficult to explain and predict. To address this issue, we examined two wildfires in Colorado, United States, across the first and second postfire years and leveraged statistical learning (SL) to predict and explain biogeochemical responses.
View Article and Find Full Text PDFThe deep biosphere hosts uniquely adapted microorganisms overcoming geochemical extremes at significant depths within the crust of the Earth. Attention is required to understand the near subsurface and its continuity with surface systems, where numerous novel microbial members with unique physiological modifications remain to be identified. This surface-subsurface relationship raises key questions about networking of surface hydrology, geochemistry affecting near-subsurface microbial composition, and resiliency of subsurface ecosystems.
View Article and Find Full Text PDFModern carbonate tufa towers in the alkaline (~pH 9.5) Big Soda Lake (BSL), Nevada, exhibit rapid precipitation rates (exceeding 3 cm/year) and host diverse microbial communities. Geochemical indicators reveal that carbonate precipitation is, in part, promoted by the mixing of calcium-rich groundwater and carbonate-rich lake water, such that a microbial role for carbonate precipitation is unknown.
View Article and Find Full Text PDFUnlabelled: We evaluated the association of bone fracture with mortality among persons with HIV, controlling for sociodemographic, behavioral, and clinical factors. Incident fracture was associated with 48% greater risk of all-cause mortality, underscoring the need for bone mineral density screening and fracture prevention.
Purpose/introduction: Low bone mineral density (BMD) and fracture are more common among persons with HIV (PWH) than those without HIV infection.
The recent leveraging of genome-resolved metagenomics has generated an enormous number of genomes from novel uncultured microbial lineages yet left many clades undescribed. Here, we present a global analysis of genomes belonging to Binatota (UBP10), a globally distributed, yet-uncharacterized bacterial phylum. All orders in Binatota encoded the capacity for aerobic methylotrophy using methanol, methylamine, sulfomethanes, and chloromethanes as the substrates.
View Article and Find Full Text PDFMicro-organisms have long been implicated in the construction of stromatolites. Yet, establishing a microbial role in modern stromatolite growth via molecular analysis is not always straightforward because DNA in stromatolites can have multiple origins. For example, the genomic material could represent the microbes responsible for the construction of the stromatolite (i.
View Article and Find Full Text PDFMetagenome assembled genomes (MAGs) and single amplified genomes (SAGs) affiliated with two distinct Methanobacterium lineages were recovered from subsurface fracture waters of the Samail Ophiolite, Sultanate of Oman. Lineage Type I was abundant in waters with circumneutral pH, whereas lineage Type II was abundant in hydrogen rich, hyperalkaline waters. Type I encoded proteins to couple hydrogen oxidation to CO reduction, typical of hydrogenotrophic methanogens.
View Article and Find Full Text PDFSerpentinization can generate highly reduced fluids replete with hydrogen (H) and methane (CH), potent reductants capable of driving microbial methanogenesis and methanotrophy, respectively. However, CH in serpentinized waters is thought to be primarily abiogenic, raising key questions about the relative importance of methanogens and methanotrophs in the production and consumption of CH in these systems. Herein, we apply molecular approaches to examine the functional capability and activity of microbial CH cycling in serpentinization-impacted subsurface waters intersecting multiple rock and water types within the Samail Ophiolite of Oman.
View Article and Find Full Text PDFRecent discoveries suggest that the candidate superphyla Patescibacteria and DPANN constitute a large fraction of the phylogenetic diversity of Bacteria and Archaea. Their small genomes and limited coding potential have been hypothesized to be ancestral adaptations to obligate symbiotic lifestyles. To test this hypothesis, we performed cell-cell association, genomic, and phylogenetic analyses on 4,829 individual cells of Bacteria and Archaea from 46 globally distributed surface and subsurface field samples.
View Article and Find Full Text PDFBiological sulfur cycling in polar, low-temperature ecosystems is an understudied phenomenon in part due to difficulty of access and the dynamic nature of glacial environments. One such environment where sulfur cycling is known to play an important role in microbial metabolisms is located at Borup Fiord Pass (BFP) in the Canadian High Arctic. Here, transient springs emerge from ice near the terminus of a glacier, creating a large area of proglacial aufeis (spring-derived ice) that is often covered in bright yellow/white sulfur, sulfate, and carbonate mineral precipitates accompanied by a strong odor of hydrogen sulfide.
View Article and Find Full Text PDFOur current knowledge of host-virus interactions in biofilms is limited to computational predictions based on laboratory experiments with a small number of cultured bacteria. However, natural biofilms are diverse and chiefly composed of uncultured bacteria and archaea with no viral infection patterns and lifestyle predictions described to date. Herein, we predict the first DNA sequence-based host-virus interactions in a natural biofilm.
View Article and Find Full Text PDFHere, we present 95 metagenome-assembled genomes (MAGs) that harbor antimicrobial resistance genes, isolated from samples obtained in a large advanced wastewater reclamation facility prior to microfiltration. The MAGs were not in abundance after filtration at the facility and represent a useful resource to the water treatment community at large.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFMicrobial life permeates Earth's critical zone and has likely inhabited nearly all our planet's surface and near subsurface since before the beginning of the sedimentary rock record. Given the vast time that Earth has been teeming with life, do astrobiologists truly understand what geological features untouched by biological processes would look like? In the search for extraterrestrial life in the Universe, it is critical to determine what constitutes a biosignature across multiple scales, and how this compares with "abiosignatures" formed by nonliving processes. Developing standards for abiotic and biotic characteristics would provide quantitative metrics for comparison across different data types and observational time frames.
View Article and Find Full Text PDF