The high-metabolic demand of neurons and their reliance on glucose as an energy source places them at risk for dysfunction and death under conditions of metabolic and oxidative stress. Uncoupling proteins (UCPs) are mitochondrial inner membrane proteins implicated in the regulation of mitochondrial membrane potential (Deltapsim) and cellular energy metabolism. The authors cloned UCP4 cDNA from mouse and rat brain, and demonstrate that UCP4 mRNA is expressed abundantly in brain and at particularly high levels in populations of neurons believed to have high-energy requirements.
View Article and Find Full Text PDFNeurogenesis is an ongoing process in the hippocampus and olfactory bulb of adult mammals, regulated in part by trophic factors. While glial cell line-derived neurotrophic factor (GDNF) is being directly delivered into the nigrostriatal system of the brain for the treatment of Parkinson's disease in clinical trials, little is known about its effects on cell genesis in the brain. Here, we investigated the effects of GDNF on progenitor cell proliferation and differentiation in two GDNF-responsive areas, the hippocampus and substantia nigra.
View Article and Find Full Text PDFTemporal discounting refers to the decrease in the present, subjective value of a reward as the time to its receipt increases. Results from humans have shown that a hyperbola-like function describes the form of the discounting function when choices involve hypothetical monetary rewards. In addition, magnitude effects have been reported in which smaller reward amounts are discounted more steeply than larger amounts.
View Article and Find Full Text PDFWe measured and manipulated intracellular potassium (K+) fluxes in cultured hippocampal neurons in an effort to understand the involvement of K+ in neuronal death under conditions of ischemia and exposure to apoptotic stimuli. Measurements of the intracellular K+ concentration using the fluorescent probe 1,3-benzenedicarboxylic acid, 4,4'-[1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16-diylbis(5-methoxy-6,2-benzofurandiyl)]bis-, tetrakis [(acetyloxy) methyl] ester (PBFI) revealed that exposure of neurons to cyanide (chemical hypoxia), glutamate (excitotoxic insult) or staurosporine (apoptotic stimulus) results in efflux of K+ and cell death. Treatment of neurons with 5-hydroxydecanoate (5HD), an inhibitor of mitochondrial K+ channels, reduced K+ fluxes in neurons exposed to each insult and increased the resistance of the cells to death.
View Article and Find Full Text PDF