Methods Mol Biol
March 2018
Exogenous lipid-anchored proteins can be incorporated into the plasma membranes of living mammalian cells, allowing the chemical structure of the incorporated protein and its lipid anchor to be controlled (and varied) to a much greater degree than is possible for proteins expressed by the cells themselves. This technology offers a variety of potential applications, including incorporating novel and complex protein constructs into cell surfaces and exploring structure-function relationships for biologically important lipid-anchored proteins such as glycosylphosphatidylinositol-anchored proteins. Here we describe detailed methods for stable incorporation of artificial lipid-anchored proteins into cultured mammalian cells under mild, nonperturbing conditions.
View Article and Find Full Text PDFWe have examined quantitatively the efficiency and the kinetics of sortase A-mediated coupling of model substrate proteins (derived from green fluorescent protein and the SNAP variant of O-alkylguanine-DNA alkyltransferase) to large unilamellar liposomes incorporating low levels of oligopeptide-modified acceptor lipids. Under normal reaction conditions, even using high concentrations of S. aureus or S.
View Article and Find Full Text PDFBackground: Obatoclax is a clinical stage drug candidate that has been proposed to target and inhibit prosurvival members of the Bcl-2 family, and thereby contribute to cancer cell lethality. The insolubility of this compound, however, has precluded the use of many classical drug-target interaction assays for its study. Thus, a direct demonstration of the proposed mechanism of action, and preferences for individual Bcl-2 family members, remain to be established.
View Article and Find Full Text PDFLipid rafts in eukaryotic cells are sphingolipid and cholesterol-rich, ordered membrane regions that have been postulated to play roles in many membrane functions, including infection. We previously demonstrated the existence of cholesterol-lipid-rich domains in membranes of the prokaryote, B. burgdorferi, the causative agent of Lyme disease [LaRocca et al.
View Article and Find Full Text PDFActivation of G-protein heterotrimers by receptors at the plasma membrane stimulates βγ-complex dissociation from the α-subunit and translocation to internal membranes. This intermembrane movement of lipid-modified proteins is a fundamental but poorly understood feature of cell signaling. The differential translocation of G-protein βγ-subunit types provides a valuable experimental model to examine the movement of signaling proteins between membranes in a living cell.
View Article and Find Full Text PDFSingle-molecule observations reveal that lipid- and protein-based interactions jointly contribute to the interactions among glycosylphosphatidylinositol-anchored proteins in membranes. Understanding these interactions will help to refine long-evolving (and still debated) models of 'raft' domains in biological membranes.
View Article and Find Full Text PDFWe have used artificial phosphatidylethanolamine-polyethylene glycol (PE-PEG)-anchored proteins, incorporated into living mammalian cells, to evaluate previously proposed roles for ordered lipid 'raft' domains in the post-endocytic trafficking of glycosylphosphatidylinositol (GPI)-anchored proteins in CHO and BHK cells. In CHO cells, endocytosed PE-PEG protein conjugates colocalized strongly with the internalized GPI-anchored folate receptor, concentrating in the endosomal recycling compartment, regardless of the structure of the hydrocarbon chains of the PE-PEG 'anchor'. However, internalized PE-PEG protein conjugates with long-chain saturated anchors recycled to the plasma membrane at a slow rate comparable to that measured for the GPI-anchored folate receptor, whereas conjugates with short-chain or unsaturated anchors recycled at a faster rate similar to that observed for the transferrin receptor.
View Article and Find Full Text PDFAlthough specific proteins have been identified that regulate the membrane association and facilitate intracellular transport of prenylated Rho- and Rab-family proteins, it is not known whether cellular proteins fulfill similar roles for other prenylated species, such as Ras-family proteins. We used a previously described method to evaluate how several cellular proteins, previously identified as potential binding partners (but not effectors) of K-ras4B, influence the dynamics of K-ras association with the plasma membrane. Overexpression of either PDEδ or PRA1 enhances, whereas knockdown of either protein reduces, the rate of dissociation of K-ras from the plasma membrane.
View Article and Find Full Text PDFWe examined how crowding of the surfaces of lipid vesicles with either grafted polyethyleneglycol (PEG) chains or bilayer-anchored protein molecules affects the binding of soluble proteins to the vesicle surface. Escherichia coli dihydrofolate reductase (DHFR, 18 kDa) or a larger fusion protein, NusA-DHFR (72 kDa), binds reversibly but with high affinity to a methotrexate-modified lipid (MTX-PE) incorporated into large unilamellar vesicles. Incorporation of phosphatidylethanolamine-PEG5000 into the vesicles strongly decreases the affinity of binding of both proteins, to a degree that varies roughly exponentially with the lateral density of the PEG chains.
View Article and Find Full Text PDFDiverse glycosylphosphatidylinositol (GPI)-anchored proteins enter mammalian cells via the clathrin- and dynamin-independent, Arf1-regulated GPI-enriched early endosomal compartment/clathrin-independent carrier endocytic pathway. To characterize the determinants of GPI protein targeting to this pathway, we have used fluorescence microscopic analyses to compare the internalization of artificial lipid-anchored proteins, endogenous membrane proteins, and membrane lipid markers in Chinese hamster ovary cells. Soluble proteins, anchored to cell-inserted saturated or unsaturated phosphatidylethanolamine (PE)-polyethyleneglycols (PEGs), closely resemble the GPI-anchored folate receptor but differ markedly from the transferrin receptor, membrane lipid markers, and even protein-free PE-PEGs, both in their distribution in peripheral endocytic vesicles and in the manner in which their endocytic uptake responds to manipulations of cellular Arf1 or dynamin activity.
View Article and Find Full Text PDFMeasurements of contact-dependent fluorescence quenching and of fluorescence resonance energy transfer (FRET) within bilayers provide information concerning the spatial relationships between molecules on distance scales of a few nm or up a few tens of nm, respectively, and are therefore well suited to detect the presence and composition of membrane microdomains. As described in this review, techniques based on fluorescence quenching and FRET have been used to demonstrate the formation of nanoscale liquid-ordered domains in cholesterol-containing model membranes under physiological conditions, and to investigate the structural features of lipids and proteins that influence their partitioning between liquid-ordered and liquid-disordered domains. FRET-based methods have also been used to test for the presence of 'raft' microdomains in the plasma membranes of mammalian cells.
View Article and Find Full Text PDFBiochim Biophys Acta
December 2005
The special physical and functional properties ascribed to lipid rafts in biological membranes reflect their distinctive organization and composition, properties that are hypothesized to rest in part on the differential partitioning of various membrane components between liquid-ordered and liquid-disordered lipid environments. This review describes the principles and findings of recently developed methods to monitor the partitioning of membrane proteins and lipids between liquid-ordered and liquid-disordered domains in model membranes, and how these approaches can aid in elucidating the properties of rafts in biological membranes.
View Article and Find Full Text PDFWe have used fluorescence microscopy and the technique of rapamycin-regulated protein heterodimerization to examine the dynamics of the subcellular localizations of fluorescent proteins fused to lipid-modified protein sequences and to wild-type and mutated forms of full-length K-ras4B. Singly prenylated or myristoylated fluorescent protein derivatives lacking a "second signal" to direct them to specific subcellular destinations, but incorporating a rapamycin-dependent heterodimerization module, rapidly translocate to mitochondria upon rapamycin addition to bind to a mitochondrial outer membrane protein incorporating a complementary heterodimerization module. Under the same conditions analogous constructs anchored to the plasma membrane by multiply lipid-modified sequences, or by a transmembrane helix, show very slow or no transfer to mitochondria, respectively.
View Article and Find Full Text PDFWe have incorporated artificial lipid-anchored streptavidin conjugates with fully saturated or polyunsaturated lipid anchors into the plasma membranes of Jurkat T-lymphocytes to assess previous conclusions that the activation of signaling processes induced in these cells by clustering of endogenous glycosylphosphatidylinositol-anchored proteins or ganglioside GM1 depends specifically on the association of these membrane components with lipid rafts. Lipid-anchored streptavidin conjugates could be incorporated into Jurkat or other mammalian cell surfaces by inserting biotinylated phosphatidylethanolamine-polyethyleneglycols (PE-PEGs) and subsequently binding streptavidin to the cell-incorporated PE-PEGs. Saturated dipalmitoyl-PE-PEG-streptavidin conjugates prepared in this manner partitioned substantially into the detergent-insoluble membrane fraction isolated from Jurkat or fibroblast cells, whereas polyunsaturated dilinoleoyl-PE-PEG-anchored conjugates were wholly excluded from this fraction, consistent with the differences in the affinities of the two types of lipid anchors for liquid-ordered membrane domains.
View Article and Find Full Text PDFFluorescent-labeled derivatives of the Antennapedia-derived cell-penetating peptide penetratin, and of the simpler but similarly charged peptides R(6)GC-NH(2) and K(6)GC-NH(2), are shown to be able to translocate into large unilamellar lipid vesicles in the presence of a transbilayer potential (inside negative). Vesicles with diverse lipid compositions, and combining physiological proportions of neutral and anionic lipids, are able to support substantial potential-dependent uptake of all three cationic peptides. The efficiency of peptide uptake under these conditions is strongly modulated by the vesicle lipid composition, in a manner that suggests that more than one mechanism of peptide uptake may operate in different systems.
View Article and Find Full Text PDFAn approach is described using fluorescence resonance energy transfer (FRET) to detect inhomogeneity in lipid organization, on distance scales of the order of tens of nanometers or greater, in lipid bilayers. This approach compares the efficiency of energy transfer between two matched fluorescent lipid donors, differing in their affinities for ordered versus disordered regions of the bilayer, and an acceptor lipid that distributes preferentially into disordered regions. Inhomogeneities in bilayer organization, on spatial scales of tens of nanometers or greater, are detected as a marked difference in the efficiencies of quenching of fluorescence of the two donor species by the acceptor.
View Article and Find Full Text PDFBiochim Biophys Acta
March 2003
Biochemical and cell-biological experiments have identified cholesterol as an important component of lipid 'rafts' and related structures (e.g., caveolae) in mammalian cell membranes, and membrane cholesterol levels as a key factor in determining raft stability and organization.
View Article and Find Full Text PDFWe have used fluorescence-quenching measurements to characterize the partitioning of a variety of indolyl-labeled phospho- and sphingolipids between gel or liquid-ordered and liquid-disordered lipid domains in several types of lipid bilayers where such domains coexist. In both cholesterol-free and cholesterol-containing lipid mixtures, sphingolipids with diverse polar headgroups (ranging from sphingomyelin and monoglycosylceramides to ganglioside GM1) show a net preference for partitioning into ordered domains, which varies modestly in magnitude with varying headgroup structure. The affinities of different sphingolipids for ordered lipid domains do not vary in a consistent manner with the size or other simple structural properties of the polar headgroup, such that for example ganglioside GM1 partitions between ordered and disordered lipid domains in a manner very similar to sphingomyelin.
View Article and Find Full Text PDFPoly(ethyleneglycol) (PEG), anchored at the surface of liposomes via the conjugation to a lipid, is commonly used for increasing the liposome stability in the blood stream. In order to gain a better understanding of the protective properties of interfacial polymers, we have studied the binding of melittin to PEG-lipid-containing membranes as well as the melittin-induced efflux of a fluorescent marker from liposomes containing PEG-lipids. We examined the effect of the polymer size by using PEG with molecular weights of 2000 and 5000.
View Article and Find Full Text PDF