Publications by authors named "John R Mercer"

Many cardiovascular problems stem from blockages that form within the vasculature and often treatment includes fitting a stent through percutaneous coronary intervention. This offers a minimally invasive therapy but re-occlusion through restenosis or thrombosis formation often occurs post-deployment. Research is ongoing into the creation of smart stents that can detect the occurrence of further problems.

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD) affects 10% of the global population costing over a hundred billion dollars per annum and leading to increased risk of cardiovascular disease. Many patients with CKD require regular haemodialyses. Synthetic arteriovenous grafts (AVG) are increasingly used to provide rapid vascular connection for dialysis.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) is the biggest cause of death globally. CVD is caused by atherosclerosis which is the accumulation of fatty deposits, often within the fine arteries of the heart or brain. These blockages reduce blood flow and lead to oxygen starvation (ischemia) which can lead to heart attacks and strokes.

View Article and Find Full Text PDF

Theragnostic pairs of isotopes are used to infer radiation dosimetry for a therapeutic radiopharmaceutical from a diagnostic imaging study with the same tracer molecule labelled with an isotope better suited for the imaging task. We describe the transfer of radiation dosimetry from the diagnostic radioiodine isotope I, labelled for the hypoxia tracer molecule iodoazomycin arabinoside ([I]IAZA), to isotopes I (therapeutic) and I (PET imaging). Uncertainties introduced by the dissimilar isotope half-lives are discussed in detail.

View Article and Find Full Text PDF

Self-reporting implantable medical devices are the future of cardiovascular healthcare. Cardiovascular complications such as blocked arteries that lead to the majority of heart attacks and strokes are frequently treated with inert metal stents that reopen affected vessels. Stents frequently re-block after deployment due to a wound response called in-stent restenosis (ISR).

View Article and Find Full Text PDF

Unlabelled: The cardiovascular disease of atherosclerosis is characterised by aged vascular smooth muscle cells and compromised cell survival. Analysis of human and murine plaques highlights markers of DNA damage such as p53, Ataxia telangiectasia mutated (ATM), and defects in mitochondrial oxidative metabolism as significant observations. The antiageing protein Klotho could prolong VSMC survival in the atherosclerotic plaque and delay the consequences of plaque rupture by improving VSMC phenotype to delay heart attacks and stroke.

View Article and Find Full Text PDF

DNA damage and mitochondrial dysfunction are defining characteristics of aged vascular smooth muscle cells (VSMCs) found in atherosclerosis. Pink1 kinase regulates mitochondrial homeostasis and recycles dysfunctional organelles critical for maintaining energetic homeostasis. Here, we generated a new vascular-specific Pink1 knockout and assessed its effect on VSMC-dependent atherogenesis and VSMC energetic metabolism .

View Article and Find Full Text PDF

Cardiovascular disease (CVD) is a group of heart and vasculature conditions which are the leading form of mortality worldwide. Blood vessels can become narrowed, restricting blood flow, and drive the majority of hearts attacks and strokes. Reactive surgical interventions are frequently required; including percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG).

View Article and Find Full Text PDF

Cardiovascular diseases remain a significant global burden with 1-in-3 of all deaths attributable to the consequences of the disease. The main cause is blocked arteries which often remain undetected. Implantable medical devices (IMDs) such as stents and grafts are often used to reopen vessels but over time these too will re-block.

View Article and Find Full Text PDF

Cardiovascular disease remains the leading cause of death in Western society. Recent technological advances have opened the opportunity of developing new and innovative smart stent devices that have advanced electrical properties that can improve diagnosis and even treatment of previously intractable conditions, such as central line access failure, atherosclerosis and reporting on vascular grafts for renal dialysis. Here we review the latest advances in the field of cardiovascular medical implants, providing a broad overview of the application of their use in the context of cardiovascular disease rather than an in-depth analysis of the current state of the art.

View Article and Find Full Text PDF

Background And Aims: DNA damage and mitochondrial dysfunction are thought to play an essential role in ageing and the energetic decline of vascular smooth muscle cells (VSMCs) essential for maintaining plaque integrity. We aimed to better understand VSMCs and identify potentially useful compensatory pathways that could extend their lifespan. Moreover, we wanted to assess if defects in mitochondrial respiration exist in human atherosclerotic plaques and to identify the appropriate markers that may reflect a switch in VSMC energy metabolism.

View Article and Find Full Text PDF

Background: Loss of a cell's capacity to generate sufficient energy for cellular functions is a key hallmark of the ageing process and ultimately leads to a variety of important age-related pathologies such as cancer, Parkinson's disease and atherosclerosis. Regenerative medicine has sought to reverse these pathologies by reprogramming somatic cells to a more juvenile energetic state using a variety of stem cell factors. One of these factors, Lin28, is considered a candidate for modification in the reprogramming of cellular energetics to ameliorate the ageing process while retaining cell phenotype.

View Article and Find Full Text PDF

Background: The multitargeting tyrosine kinase inhibitor (TKI) sunitinib is currently the first-line drug therapy for metastasizing renal cell carcinoma (RCC). TKIs have profound effects on tumor angiogenesis, leading to modifications of the tumor microenvironment. The goal of this study was to determine whether these treatment-induced changes can be detected with [(18)F]FAZA.

View Article and Find Full Text PDF

The phospholipid phosphatidylserine (PS) is an early marker exploited for detecting apoptosis (PS externalization in the cell membrane bilayer) and one factor that is associated with increased amyloid plaque deposition in transmissible spongiform encephalopathies (TSEs). PS can therefore be considered as a promising target for diagnosis or treatment of diseases. Aptamers (short nucleic acid sequences) are a particularly attractive class of materials among those currently considered for targeting PS.

View Article and Find Full Text PDF

The impact of calcification on the carotid atherosclerotic plaque vulnerability remains controversial and unclear. This study assesses the critical mechanical conditions induced by the calcium at the lumen surface, i.e.

View Article and Find Full Text PDF

Cardiovascular disease remains the commonest form of mortality and morbidity in the Western World. It accounts for more deaths than the combined incidence of all cancers. There remains an urgency to identify and translate therapies to reduce the effects of this disease and its associated co-morbidities.

View Article and Find Full Text PDF

Background: Mitochondrial DNA (mtDNA) damage occurs in both circulating cells and the vessel wall in human atherosclerosis. However, it is unclear whether mtDNA damage directly promotes atherogenesis or is a consequence of tissue damage, which cell types are involved, and whether its effects are mediated only through reactive oxygen species.

Methods And Results: mtDNA damage occurred early in the vessel wall in apolipoprotein E-null (ApoE(-/-)) mice, before significant atherosclerosis developed.

View Article and Find Full Text PDF

Based on animal model studies, [131I]IAZA may be useful as an adjunct radiotherapeutic (MRT) drug for the treatment of tumor hypoxia. However, radioactivity in the blood of patients and healthy volunteers dosed with [123I]IAZA has a protracted terminal elimination phase in which clearance is influenced by free [123I]IAZA and possibly by unidentified metabolites. The current work reports that about 40% of the radioactivity in human serum is associated with the serum protein fraction, and that the free:bound ratio is constant at about 60:40 for at least the first 135 min after injection, as determined by radio-HPLC analyses.

View Article and Find Full Text PDF

Objective: Caffeine remains one of the most widely consumed drugs in the world. Caffeine has multiple actions, including inhibition of the DNA damage response, and its metabolites, 1-methylxanthine and 1-methyluric acid, are potent antioxidants. Combined, these properties can exert direct effects on cell proliferation, cell death, inflammation, and DNA repair, all important processes that occur in atherosclerosis.

View Article and Find Full Text PDF

The inhibition or dysregulation of apoptosis plays an intimate role in the initiation and progression of cancer by confounding normal tissue homeostasis. We currently do not have a clinical method to assess apoptosis induced by cancer therapies. Phosphatidylserine (PS) is an attractive target for imaging apoptosis because it is on the exterior of the apoptotic cells and PS externalization is an early marker of apoptosis.

View Article and Find Full Text PDF

Numerous animal studies have consistently shown that early life exposure to LP (low-protein) diet programmes risk factors for CVD (cardiovascular disease) such as dyslipidaemia, high BP (blood pressure) and cardiac dysfunction in the offspring. However, studies on the effect of maternal under-nutrition on offspring development of atherosclerosis are scarce. Applying our LP model to the ApoE(-/-) atherosclerosis-prone mouse model, we investigated the development of atherosclerotic lesions in the aortic root of 6-month-old offspring.

View Article and Find Full Text PDF

A number of recent studies suggest that mitochondrial oxidative damage may be associated with atherosclerosis and the metabolic syndrome. However, much of the evidence linking mitochondrial oxidative damage and excess reactive oxygen species (ROS) with these pathologies is circumstantial. Consequently the importance of mitochondrial ROS in the etiology of these disorders is unclear.

View Article and Find Full Text PDF

The widely used (18)F-prosthetic group N-succinimidyl-4-[(18)F]fluorobenzoate ([(18)F]SFB) and the recently developed N-[6-(4-[(18)F]fluorobenzylidene)aminooxyhexyl]maleimide ([(18)F]FBAM) were investigated for radiolabeling of two representative phosphatidylserine-binding peptides. The prosthetic groups were compared with respect to required reactions conditions for optimum labeling, radiolabeling yield and chemoselectivity. The N-terminus labeled product produced by reaction of [(18)F]SFB with binding peptide LIKKPF was produced in 18% radiochemical yield while no N-terminus labeled product could be isolated following [(18)F]SFB reaction with PDGLSR.

View Article and Find Full Text PDF

Introduction: Several clinical studies have shown low or no expression of GLUT1 in breast cancer patients, which may account for the low clinical specificity and sensitivity of 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) used in positron emission tomography (PET). Therefore, it has been proposed that other tumor characteristics such as the high expression of GLUT2 and GLUT5 in many breast tumors could be used to develop alternative strategies to detect breast cancer. Here we have studied the in vitro and in vivo radiopharmacological profile of 6-deoxy-6-[(18)F]fluoro-D-fructose (6-[(18)F]FDF) as a potential PET radiotracer to image GLUT5 expression in breast cancers.

View Article and Find Full Text PDF