Cellular therapies for the treatment of human diseases, such as chimeric antigen receptor (CAR) T and natural killer (NK) cells have shown remarkable clinical efficacy in treating hematological malignancies; however, current methods mainly utilize viral vectors that are limited by their cargo size capacities, high cost, and long timelines for production of clinical reagent. Delivery of genetic cargo via DNA transposon engineering is a more timely and cost-effective approach, yet has been held back by less efficient integration rates. Here, we report the development of a novel hyperactive TcBuster (TcB-M) transposase engineered through structure-guided and in vitro evolution approaches that achieves high-efficiency integration of large, multicistronic CAR-expression cassettes in primary human cells.
View Article and Find Full Text PDFExposure of human corneal limbal epithelial (HCLE) cells to UVB triggers rapid loss of K(+) and apoptosis via activation of caspases -9, -8 and -3. It has been shown that preventing loss of intracellular K(+) can inhibit apoptosis. The goal of this study was to investigate the effect of K(+) on the UVB-induced caspase activity.
View Article and Find Full Text PDF