Publications by authors named "John R Lawrence"

Background: Clinicians are encouraged to use the Centers for Medicare & Medicaid Services early management bundle for severe sepsis and septic shock (SEP-1); however, it is unclear whether this process measure improves patient outcomes.

Purpose: The purpose of this study was to evaluate whether compliance with the SEP-1 bundle is a predictor of hospital mortality, length of stay (LOS), and intensive care unit LOS at a suburban community hospital.

Methods: A retrospective observational study was conducted.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how de-methyl esterification of homogalacturonan, combined with calcium cross-linking, may improve freezing survival in cold-acclimated plants by making their cell walls less porous.
  • Japanese bunching onion leaves showed an 8 °C increase in freezing survival and a significant reduction in tissue permeability after two weeks of cold acclimation, linked to higher pectin methylesterase activity and lower homogalacturonan methylation.
  • Treatment with calcium chloride in non-acclimated plants increased certain cell wall components and decreased visible pores, but did not enhance survival to freezing; rather, it aided in ice nucleation reduction to levels seen in cold-acclimated plants.*
View Article and Find Full Text PDF

The 4.8-Mbp draft genome sequence of Polaromonas eurypsychrophila AER18D-145, isolated from a uranium tailings management facility, is reported. The sequence may provide insights into the mechanisms of the hypertolerance of this strain to extreme conditions and help determine its potential for bioremediation applications.

View Article and Find Full Text PDF

Characterizing the response of microbial communities to a range of antibiotic concentrations is one of the strategies used to understand the impact of antibiotic resistance. Many studies have described the occurrence and prevalence of antibiotic resistance in microbial communities from reservoirs such as hospitals, sewage, and farm feedlots, where bacteria are often exposed to high and/or constant concentrations of antibiotics. Outside of these sources, antibiotics generally occur at lower, sub-minimum inhibitory concentrations (sub-MICs).

View Article and Find Full Text PDF

In response to new stringent regulations in Canada regarding the use of antibiotics in animal production, many farms have implemented practices to produce animals that are raised without antibiotics (RWA) from birth to slaughter. This study aims to assess the impact of RWA production practices on reducing the actual total on-farm use of antibiotics, the occurrence of pathogens, and the prevalence of antimicrobial resistance (AMR). A 28-month longitudinal surveillance of farms that adopted the RWA program and conventional farms using antibiotics in accordance with the new regulations (non-RWA) was conducted by collecting fecal samples from 6-week-old pigs and composite manure from the barn over six time points and applying whole-genome sequencing (WGS) to assess the prevalence of AMR genes as well as the abundance of pathogens.

View Article and Find Full Text PDF

The 3.9-Mbp draft genome sequence of sp. strain 260, which was isolated from a uranium tailings management facility, is reported.

View Article and Find Full Text PDF

Microbial communities are an important aspect of overall riverine ecology; however, appreciation of the effects of anthropogenic activities on unique riverine microbial niches, and how the collection of these samples affects the observed diversity and community profile is lacking. We analyzed prokaryotic and eukaryotic communities from surface water, biofilms, and suspended load niches along a gradient of oil sands-related contamination in the Athabasca River (Alberta, Canada), with suspended load or particle-associated communities collected either via Kenney Sampler or centrifugation manifold. At the phylum level, different niche communities were highly similar to each other and across locations.

View Article and Find Full Text PDF

New Canadian regulations have required that all use of antibiotics in livestock animal production should be under veterinary prescription and oversight, while the prophylactic use and inclusion of these agents in animal feed as growth promoters are also banned. In response to this new rule, many Canadian animal producers have voluntarily implemented production practices aimed at producing animals effectively while avoiding the use of antibiotics. In the swine industry, one such program is the 'raised without antibiotics' (RWA) program.

View Article and Find Full Text PDF

Manufactured Zn oxide nanoparticle (ZnO-NP) are extensively used world-wide in personal care and industrial products and are important contaminants of aquatic environments. To understand the overall impact of ZnO-NP contamination on aquatic ecosystems, investigation of their toxicity on aquatic biofilms is of particular consequence, given biofilms are known sinks for NP contaminants. In order to assess alterations in the functional activity of river microbial biofilm communities as a result of environmentally-relevant ZnO-NP exposure, biofilms were exposed to ionic zinc salt or ZnOPs that were uncoated (hydrophilic), coated with silane (hydrophobic) or stearic acid (lipophilic), at a total concentration of 188 μg l Zn.

View Article and Find Full Text PDF

Cerium oxide (CeO) nanoparticles are used as in-fuel catalysts and in manufacturing processes, creating a potential for release to aquatic environments. Exposures at 1 and 10 μg/L CeO-nanoparticles were made to assess effects during the development of river biofilm communities. Scanning transmission x-ray microscopy (STXM) indicated extensive sorption of nanoparticles to the community and co-localization with lipid moieties.

View Article and Find Full Text PDF

Studies of the South Saskatchewan River confirmed that N,N-diethyl-m-toluamide (DEET) is ubiquitous at 10 to 20 ng/L, whereas in effluent-dominated Wascana Creek, levels of 100 to 450 ng/L were observed. Effects of DEET exposure were assessed in microbial communities using a wide variety of measures. Communities developed in rotating annular reactors with either 100 or 500 ng/L DEET, verified using gas chromatography-mass spectrometry analyses.

View Article and Find Full Text PDF

The sorption and distribution of nickel, a common metal contaminant in aquatic systems, were assessed in bacterial microcolonies using a combination of fluorescent staining with Newport Green and confocal laser scanning microscopy (CLSM) with confirmation by scanning electron microscopy (SEM) and X-ray microprobe analyses. CLSM with Newport Green, selected fluor-conjugated lectins, and DNA staining allowed for the discrimination of the microdomains present in the microcolony exopolymeric matrix and detection of bound nickel. This approach avoided the artefacts associated with drying and fixation required by analytical electron microscopy.

View Article and Find Full Text PDF

Although methanol has frequently been used as an inexpensive supplementary carbon source to support treatment processes, knowledge of the resultant microbial biofilms, their 3D architecture, microenvironments, exopolymer chemistry and populations remains limited. We supplied methanol as a supplementary carbon source to biofilms developing in rotating annular reactors. Analysis of circulation waters (1.

View Article and Find Full Text PDF

The emergence of multidrug resistance in bacteria has reached alarming levels. To solve this growing problem, discovery of novel cellular targets or pathways important for antimicrobial resistance is urgently needed. In this study, we explored how the alternative sigma factor, RpoE, protects Escherichia coli O157 against the toxic effects of the polycationic antimicrobial agent, chlorhexidine (CHX).

View Article and Find Full Text PDF

The genetic basis for biofilm formation among nontyphoidal salmonellae (NTS) remains poorly understood. This draft genome submission provides initial insights on the genetic differences between biofilm-forming and non-biofilm-forming clinical and environmental NTS serovars.

View Article and Find Full Text PDF

Fusarium head blight (FHB) is a serious disease of wheat worldwide. Cultivar resistance to FHB depends on biochemical factors that confine the pathogen spread in spikes. Breeding for cultivar resistance is considered the most practical way to manage this disease.

View Article and Find Full Text PDF

Protein expression and fatty acid profiles of biofilm cells of chlorhexidine-tolerant Delftia acidovorans (MIC = 15 µg/ml) and its chlorhexidine-susceptible mutant (MIC = 1 µg/ml) were investigated. The chlorhexidine-susceptible mutant (MT51) was derived from the parental strain (WT15) using Tn5 transposon mutagenesis. The disrupted gene was identified as tolQ, a component of the tolQRAB gene cluster known to be involved in outer membrane stability.

View Article and Find Full Text PDF

Selenium (Se) is an element of growing environmental concern, because low aqueous concentrations can lead to biomagnification through the aquatic food web. Biofilms, naturally occurring microbial consortia, play numerous important roles in the environment, especially in biogeochemical cycling of toxic elements in aquatic systems. The complexity of naturally forming multispecies biofilms presents challenges for characterization because conventional microscopic techniques require chemical and physical modifications of the sample.

View Article and Find Full Text PDF

Seeds of 11 of 19 plant species tested yielded naturally occurring phenanthrene degrading bacteria when placed on phenanthrene impression plates. Seed associated phenanthrene degrading bacteria were mostly detected on caragana, Canada thistle, creeping red fescue, western wheatgrass, and tall wheat grass. Based on 16S rRNA analysis the most common bacteria isolated from these seeds were strains belonging to the genera Enterobacteria, Erwinia, Burkholderia, Pantoea, Pseudomonas, and Sphingomonas.

View Article and Find Full Text PDF

Antibiotics play a pivotal role in the management of infectious disease in humans, companion animals, livestock, and aquaculture operations at a global scale. Antibiotics are produced, consumed, and released into the environment at an unprecedented scale causing concern that the presence of antibiotic residues may adversely impact aquatic and terrestrial ecosystems. Here we critically review the ecotoxicological assessment of antibiotics as related to environmental risk assessment (ERA).

View Article and Find Full Text PDF

In this study, we tested the antimicrobial activity of three metal nanoparticles (NPs), ZnO, MgO, and CaO NPs, against Salmonella enterica serovar Enteritidis in liquid medium and on solid surfaces. Out of the three tested metal NPs, ZnO NPs exhibited the most significant antimicrobial effect both in liquid medium and when embedded on solid surfaces. Therefore, we focused on revealing the mechanisms of surface-associated ZnO biocidal activity.

View Article and Find Full Text PDF

Confocal laser scanning microscopy has become a standard technique for the investigation of hydrated interfacial microbial communities at the microscale. Multiphoton and spinning-disk microscopes provide new options for in situ imaging. Progress has been made in imaging structural aspects as well as interactions and processes.

View Article and Find Full Text PDF

The physicochemical responses of Delftia acidovorans biofilms exposed to the commonly used antimicrobial chlorhexidine (CHX) were examined in this study. A CHX-sensitive mutant (MIC, 1.0 μg ml(-1)) was derived from a CHX-tolerant (MIC, 15.

View Article and Find Full Text PDF

Microbial bioaggregates and biofilms are hydrated three-dimensional structures of cells and extracellular polymeric substances (EPS). Microbial communities associated with interfaces and the samples thereof may come from natural, technical, and medical habitats. For imaging such complex microbial communities confocal laser scanning microscopy (CLSM) is the method of choice.

View Article and Find Full Text PDF

The extracellular constituents in bioaggregates and biofilms can be imaged four dimensionally by using laser scanning microscopy. In this protocol we provide guidance on how to examine the various extracellular compartments in between microbial cells and communities associated with interfaces. The current options for fluorescence staining of matrix compounds and extracellular microhabitats are presented.

View Article and Find Full Text PDF