Publications by authors named "John R Gunn"

The effect of hydrophobicity on antibody aggregation is well understood, and it has been shown that charge calculations can be useful for high-concentration viscosity and pharmacokinetic (PK) clearance predictions. In this work, structure-based charge descriptors are evaluated for their predictive performance on recently published antibody pI, viscosity, and clearance data. From this, we devised four rules for therapeutic antibody profiling which address developability issues arising from hydrophobicity and charged-based solution behavior, PK, and the ability to enrich for those that are approved by the U.

View Article and Find Full Text PDF

Accurate and efficient affinity calculations are critical to enhancing the contribution of in silico modeling during the lead optimization phase of a drug discovery campaign. Here, we present a large-scale study of the efficacy of data fusion strategies to leverage results from end-point MM/GBSA calculations in multiple receptors to identify potent inhibitors among an ensemble of congeneric ligands. The retrospective analysis of 13 congeneric ligand series curated from publicly available data across seven biological targets demonstrates that in 90% of the individual receptor structures MM/GBSA scores successfully identify subsets of inhibitors that are more potent than a random selection, and data fusion strategies that combine MM/GBSA scores from each of the receptors significantly increase the robustness of the predictions.

View Article and Find Full Text PDF

Monte Carlo (MC) methods play an important role in simulations of protein folding. These methods rely on a random sampling of moves on a potential energy surface. To improve the efficiency of the sampling, we propose a new selection of trial moves based on an empirical distribution of three-residue (triplet) conformations.

View Article and Find Full Text PDF