Publications by authors named "John R Gallagher"

Article Synopsis
  • The development of intranasal vaccines for respiratory viruses is increasing, but currently only a live-attenuated influenza vaccine is approved for this method in the U.S.
  • This study focused on the influenza virus and explored a novel structure of hemagglutinin (HA) called spike nanobicelles (SNB), which are lipid disc complexes that may enhance immune response.
  • Using these SNBs, researchers found that intranasal immunization led to the production of broad-spectrum antibodies and protection against various strains of H1N1, potentially paving the way for more effective universal influenza vaccines.
View Article and Find Full Text PDF

Influenza virus nucleoprotein (NP) is one of the most conserved influenza proteins. Both NP antigen and anti-NP antibodies are used as reagents in influenza diagnostic kits, with applications in both clinical practice, and influenza zoonotic surveillance programs. Despite this, studies on the biochemical basis of NP diagnostic serology and NP epitopes are not as developed as for hemagglutinin (HA), the fast-evolving antigen which has been the critical component of current influenza vaccines.

View Article and Find Full Text PDF

Despite the availability of seasonal vaccines and antiviral medications, influenza virus continues to be a major health concern and pandemic threat due to the continually changing antigenic regions of the major surface glycoprotein, hemagglutinin (HA). One emerging strategy for the development of more efficacious seasonal and universal influenza vaccines is structure-guided design of nanoparticles that display conserved regions of HA, such as the stem. Using the H1 HA subtype to establish proof of concept, we found that tandem copies of an alpha-helical fragment from the conserved stem region (helix-A) can be displayed on the protruding spikes structures of a capsid scaffold.

View Article and Find Full Text PDF

Influenza virus infects millions of people annually and can cause global pandemics. Hemagglutinin (HA) is the primary component of commercial influenza vaccines (CIV), and antibody titer to HA is a primary correlate of protection. Continual antigenic variation of HA requires that CIVs are reformulated yearly.

View Article and Find Full Text PDF

Current influenza vaccines predominantly induce immunity to the hypervariable hemagglutinin (HA) head, requiring frequent vaccine reformulation. Conversely, the immunosubdominant yet conserved HA stem harbors a supersite that is targeted by broadly neutralizing antibodies (bnAbs), representing a prime target for universal vaccines. Here, we showed that the co-immunization of two HA stem immunogens derived from group 1 and 2 influenza A viruses elicits cross-group protective immunity and neutralizing antibody responses in mice, ferrets, and nonhuman primates (NHPs).

View Article and Find Full Text PDF

As new vaccine technologies and platforms, such as nanoparticles and novel adjuvants, are developed to aid in the establishment of a universal influenza vaccine, studying traditional influenza split/subunit vaccines should not be overlooked. Commercially available vaccines are typically studied in terms of influenza A H1 and H3 viruses but influenza B viruses need to be examined as well. Thus, there is a need to both understand the limitations of split/subunit vaccines and develop strategies to overcome those limitations, particularly their ability to elicit cross-reactive antibodies to the co-circulating Victoria (B-V) and Yamagata (B-Y) lineages of human influenza B viruses.

View Article and Find Full Text PDF

African swine fever virus (ASFV) is among the most complex DNA viruses known. Outbreaks have killed millions of swine around the world, and there is currently no vaccine. Three recent papers report the cryo-EM structure of the complete ASFV virion, comprising a viral particle of multiple layers, and resolve the major outer-capsid protein p72 to higher resolution.

View Article and Find Full Text PDF

Negative-stain transmission electron microscopy (EM) is a technique that has provided nanometer resolution images of macromolecules for about 60 years. Developments in cryo-EM image processing have maximized the information gained from averaging large numbers of particles. These developments can now be applied back to negative-stain image analysis to ascertain domain level molecular structure (10 to 20 Å) more quickly and efficiently than possible by atomic resolution cryo-EM.

View Article and Find Full Text PDF

Immunoelectron microscopy is a powerful technique for identifying viral antigens and determining their structural localization and organization within vaccines and viruses. While traditional negative staining transmission electron microscopy provides structural information, identity of components within a sample may be confounding. Immunoelectron microscopy allows for identification and visualization of antigens and their relative positions within a particulate sample.

View Article and Find Full Text PDF

In the version of this article initially published, the labels (50 Å) above the scale bars in Fig. 1b were incorrect. The correct size is 50 nm.

View Article and Find Full Text PDF

The present vaccine against influenza virus has the inevitable risk of antigenic discordance between the vaccine and the circulating strains, which diminishes vaccine efficacy. This necessitates new approaches that provide broader protection against influenza. Here we designed a vaccine using the hypervariable receptor-binding domain (RBD) of viral hemagglutinin displayed on a nanoparticle (np) able to elicit antibody responses that neutralize H1N1 influenza viruses spanning over 90 years.

View Article and Find Full Text PDF

Influenza virus continues to be a major health problem due to the continually changing immunodominant head regions of the major surface glycoprotein, hemagglutinin (HA). However, some emerging vaccine platforms designed by biotechnology efforts, such as recombinant influenza virus-like particles (VLPs) have been shown to elicit protective antibodies to antigenically different influenza viruses. Here, using biochemical analyses and cryo-electron microscopy methods coupled to image analysis, we report the composition and 3D structural organization of influenza VLPs of the 1918 pandemic influenza virus.

View Article and Find Full Text PDF

Influenza viruses affect millions of people worldwide on an annual basis. Although vaccines are available, influenza still causes significant human mortality and morbidity. Vaccines target the major influenza surface glycoprotein hemagglutinin (HA).

View Article and Find Full Text PDF

Drug courts have been an important part of the criminal justice system since 1989. They continue to expand throughout the United States because nearly three decades of research has shown that they are more effective than other interventions, such as traditional probation. There is a pattern, though, in some drug courts where African Americans are less likely to graduate than their Caucasian counterparts.

View Article and Find Full Text PDF

All enveloped viruses, including herpesviruses, must fuse their envelope with the host membrane to deliver their genomes into target cells, making this essential step subject to interference by antibodies and drugs. Viral fusion is mediated by a viral surface protein that transits from an initial prefusion conformation to a final postfusion conformation. Strikingly, the prefusion conformation of the herpesvirus fusion protein, gB, is poorly understood.

View Article and Find Full Text PDF

While nanoparticle vaccine technology is gaining interest due to the success of vaccines like those for the human papillomavirus that is based on viral capsid nanoparticles, little information is available on the disassembly and reassembly of viral surface glycoprotein-based nanoparticles. One such particle is the hepatitis B virus surface antigen (sAg) that exists as nanoparticles. Here we show, using biochemical analysis coupled with electron microscopy, that sAg nanoparticle disassembly requires both reducing agent to disrupt intermolecular disulfide bonds, and detergent to disrupt hydrophobic interactions that stabilize the nanoparticle.

View Article and Find Full Text PDF

Ribonucleoprotein (RNP) complexes of influenza viruses are composed of multiple copies of the viral nucleoprotein (NP) that can form filamentous supra-structures. RNPs package distinct viral genomic RNA segments of different lengths into pleomorphic influenza virions. RNPs also function in viral RNA transcription and replication.

View Article and Find Full Text PDF

Zika virus (ZIKV) was identified as a cause of congenital disease during the explosive outbreak in the Americas and Caribbean that began in 2015. Because of the ongoing fetal risk from endemic disease and travel-related exposures, a vaccine to prevent viremia in women of childbearing age and their partners is imperative. We found that vaccination with DNA expressing the premembrane and envelope proteins of ZIKV was immunogenic in mice and nonhuman primates, and protection against viremia after ZIKV challenge correlated with serum neutralizing activity.

View Article and Find Full Text PDF

Influenza virus afflicts millions of people worldwide on an annual basis. There is an ever-present risk that animal viruses will cross the species barrier to cause epidemics and pandemics resulting in great morbidity and mortality. Zoonosis outbreaks, such as the H7N9 outbreak, underscore the need to better understand the molecular organization of viral immunogens, such as recombinant influenza virus hemagglutinin (HA) proteins, used in influenza virus subunit vaccines in order to optimize vaccine efficacy.

View Article and Find Full Text PDF

The antibody response to influenza is primarily focused on the head region of the hemagglutinin (HA) glycoprotein, which in turn undergoes antigenic drift, thus necessitating annual updates of influenza vaccines. In contrast, the immunogenically subdominant stem region of HA is highly conserved and recognized by antibodies capable of binding multiple HA subtypes. Here we report the structure-based development of an H1 HA stem-only immunogen that confers heterosubtypic protection in mice and ferrets.

View Article and Find Full Text PDF

Unlabelled: Herpes simplex virus 1 (HSV-1) and HSV-2 infect many humans and establish a latent infection in sensory ganglia. Although some infected people suffer periodic recurrences, others do not. Infected people mount both cell-mediated and humoral responses, including the production of virus-neutralizing antibodies (Abs) directed at viral entry glycoproteins.

View Article and Find Full Text PDF

Entry of herpes simplex virus (HSV) into a target cell requires complex interactions and conformational changes by viral glycoproteins gD, gH/gL, and gB. During viral entry, gB transitions from a prefusion to a postfusion conformation, driving fusion of the viral envelope with the host cell membrane. While the structure of postfusion gB is known, the prefusion conformation of gB remains elusive.

View Article and Find Full Text PDF