A washer-free Nb nanoSQUID has been developed for measuring magnetization changes from nanoscale objects. The SQUID loop is etched into a 250 nm wide Au/Nb bilayer track and the diameter of the SQUID hole is ∼70 nm. In the presence of a magnetic field perpendicular to the plane of the SQUID, vortex penetration into the 250 nm wide track can be observed via the critical current-applied field characteristic and the value at which vortex first penetrates is consistent with the theoretical prediction.
View Article and Find Full Text PDFWe have found experimentally that the critical current of a square thin-film superconducting transition-edge sensor (TES) depends exponentially upon the side length L and the square root of the temperature T, a behavior that has a natural theoretical explanation in terms of longitudinal proximity effects if the TES is regarded as a weak link between superconducting leads. As a consequence, the effective transition temperature T{c} of the TES is current dependent and at fixed current scales as 1/L{2}. We have also found that the critical current can show clear Fraunhofer-like oscillations in an applied magnetic field, similar to those found in Josephson junctions.
View Article and Find Full Text PDFWe have imaged interacting crossing pancake vortex (PV) and Josephson vortex (JV) lattices in highly anisotropic Bi2Sr2CaCu2O(8+delta) single crystals under tilted magnetic fields. The dependence of vortex structures on in-plane field is in good quantitative agreement with theoretical predictions, yielding an almost temperature-independent anisotropy parameter of gamma=640+/-25. We directly confirm that the PV/JV attraction arises from small PV displacements in the presence of JV supercurrents and demonstrate how the existence of quenched disorder leads to indirect JV pinning and dynamic vortex fragmentation.
View Article and Find Full Text PDF