Publications by authors named "John Priscu"

Background: Lake Bonney, which is divided into a west lobe (WLB) and an east lobe (ELB), is a perennially ice-covered lake located in the McMurdo Dry Valleys of Antarctica. Despite previous reports on the microbial community dynamics of ice-covered lakes in this region, there is a paucity of information on the relationship between microbial genomic diversity and associated nutrient cycling. Here, we applied gene- and genome-centric approaches to investigate the microbial ecology and reconstruct microbial metabolic potential along the depth gradient in Lake Bonney.

View Article and Find Full Text PDF

Whillans Subglacial Lake (SLW) lies beneath 801 m of ice in the lower portion of the Whillans Ice Stream (WIS) in West Antarctica and is part of an extensive and active subglacial drainage network. Here, the geochemical characterization of SLW rare earth elements (REE), trace elements (TE), free amino acids (FAA), and phenolic compounds (PC) measured in lakewater and sediment porewater are reported. The results show, on average, higher values of REEs in the lakewater than in the porewater, and clear changes in all REE concentrations and select redox sensitive trace element concentrations in porewaters at a depth of ~15 cm in the 38 cm lake sediment core.

View Article and Find Full Text PDF

Ammonia-oxidizing archaea (AOA) play a key role in the aquatic nitrogen cycle. Their genetic diversity is viewed as the outcome of evolutionary processes that shaped ancestral transition from terrestrial to marine habitats. However, current genome-wide insights into AOA evolution rarely consider brackish and freshwater representatives or provide their divergence timeline in lacustrine systems.

View Article and Find Full Text PDF
Article Synopsis
  • Ice streams flowing into the Ross Ice Shelf are supported by a complex system of water-saturated sediments and subglacial lakes, which influence microbial life downstream in the West Antarctic Ice Sheet.
  • Recent research at Mercer Subglacial Lake identified high microbial abundance in surface sediments, with distinct communities compared to deeper layers, primarily consisting of chemolithoautotrophs that utilize reduced compounds.
  • The study reveals a subglacial metacommunity linked through ice sheet dynamics, with sediment characteristics such as organic carbon and methane levels significantly shaping microbial diversity and community composition.
View Article and Find Full Text PDF

The McMurdo Dry Valleys (MDVs), Antarctica, represent a cold, desert ecosystem poised on the threshold of melting and freezing water. The MDVs have experienced dramatic signs of climatic change, most notably a warm austral summer in 2001-2002 that caused widespread flooding, partial ice cover loss and lake level rise. To understand the impact of these climatic disturbances on lake microbial communities, we simulated lake level rise and ice-cover loss by transplanting dialysis-bagged communities from selected depths to other locations in the water column or to an open water perimeter moat.

View Article and Find Full Text PDF

Glaciers can accumulate and release organic matter affecting the structure and function of associated terrestrial and aquatic ecosystems. We analyzed 18 ice cores collected from six locations in Taylor Valley (McMurdo Dry Valleys), Antarctica to determine the spatial abundance and quality of organic matter, and the spatial distribution of bacterial density and community structure from the terminus of the Taylor Glacier to the coast (McMurdo Sound). Our results showed that dissolved and particulate organic carbon (DOC and POC) concentrations in the ice core samples increased from the Taylor Glacier to McMurdo Sound, a pattern also shown by bacterial cell density.

View Article and Find Full Text PDF

In 2019, the National Geographic and Rolex Perpetual Planet Everest expedition successfully retrieved the greatest diversity of scientific data ever from the mountain. The confluence of geologic, hydrologic, chemical and microbial hazards emergent as climate change increases glacier melt is significant. We review the findings of increased opportunity for landslides, water pollution, human waste contamination and earthquake events.

View Article and Find Full Text PDF

Trace elements sustain biological productivity, yet the significance of trace element mobilization and export in subglacial runoff from ice sheets is poorly constrained at present. Here, we present size-fractionated (0.02, 0.

View Article and Find Full Text PDF

We used a deep-ultraviolet fluorescence mapping spectrometer, coupled to a drill system, to scan from the surface to 105 m depth into the Greenland ice sheet. The scan included firn and glacial ice and demonstrated that the instrument is able to determine small (mm) and large (cm) scale regions of organic matter concentration and discriminate spectral types of organic matter at high resolution. Both a linear point cloud scanning mode and a raster mapping mode were used to detect and localize microbial and organic matter "hotspots" embedded in the ice.

View Article and Find Full Text PDF

Terrestrial icy environments have been found to preserve organic material and contain habitable niches for microbial life. The cryosphere of other planetary bodies may therefore also serve as an accessible location to search for signs of life. The Wireline Analysis Tool for the Subsurface Observation of Northern ice sheets (WATSON) is a compact deep-UV fluorescence spectrometer for nondestructive ice borehole analysis and spatial mapping of organics and microbes, intended to address the heterogeneity and low bulk densities of organics and microbial cells in ice.

View Article and Find Full Text PDF

Chlamydomonas sp. UWO241 is a psychrophilic alga isolated from the deep photic zone of a perennially ice-covered Antarctic lake (east lobe Lake Bonney, ELB). Past studies have shown that C.

View Article and Find Full Text PDF

Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series.

View Article and Find Full Text PDF

Developing a microbial ecological understanding of Arctic thermokarst lake sediments in a geochemical context is an essential first step toward comprehending the contributions of these systems to greenhouse gas emissions, and understanding how they may shift as a result of long term changes in climate. In light of this, we set out to study microbial diversity and structure in sediments from four shallow thermokarst lakes in the Arctic Coastal Plain of Alaska. Sediments from one of these lakes (Sukok) emit methane (CH) of thermogenic origin, as expected for an area with natural gas reserves.

View Article and Find Full Text PDF

We present the first long-term, highly resolved prokaryotic cell concentration record obtained from a polar ice core. This record, obtained from the West Antarctic Ice Sheet (WAIS) Divide (WD) ice core, spanned from the Last Glacial Maximum (LGM) to the early Holocene (EH) and showed distinct fluctuations in prokaryotic cell concentration coincident with major climatic states. The time series also revealed a ~1,500-year periodicity with greater amplitude during the Last Deglaciation (LDG).

View Article and Find Full Text PDF
Article Synopsis
  • Antarctic ice-covered lakes offer a unique environment to study aquatic fungi, providing minimal human impact for research.
  • The study analyzed five lake basins in Antarctica, revealing that fungal taxa composed a significant portion of the eukaryotic sequences, with Cryptomycota and Chytridiomycota being the most dominant.
  • Findings indicated community variations among lakes based on environmental factors, highlighting strong relationships between fungal groups and other eukaryotic organisms, and marking the first observation of early diverging fungal lineages in these ecosystems.
View Article and Find Full Text PDF

Amplified climate change in polar regions is significantly altering regional ecosystems, yet there are few long-term records documenting these responses. The McMurdo Dry Valleys (MDV) cold desert ecosystem is the largest ice-free area of Antarctica, comprising soils, glaciers, meltwater streams and permanently ice-covered lakes. Multi-decadal records indicate that the MDV exhibited a distinct ecosystem response to an uncharacteristic austral summer and ensuing climatic shift.

View Article and Find Full Text PDF

Cryoconite holes, water-filled pockets containing biological and mineralogical deposits that form on glacier surfaces, play important roles in glacier mass balance, glacial geochemistry and carbon cycling. The presence of cryoconite material decreases surface albedo and accelerates glacier mass loss, a problem of particular importance in the rapidly melting Tibetan Plateau. No studies have addressed the microbial community composition of cryoconite holes and their associated ecosystem processes on Tibetan glaciers.

View Article and Find Full Text PDF

Perennially ice-covered lakes in the McMurdo Dry Valleys, Antarctica, are chemically stratified with depth and have distinct biological gradients. Despite long-term research on these unique environments, data on the structure of the microbial communities in the water columns of these lakes are scarce. Here, we examined bacterial diversity in five ice-covered Antarctic lakes by 16S rRNA gene-based pyrosequencing.

View Article and Find Full Text PDF

Aerobic anoxygenic phototrophs (AAPs) have been shown to exist in numerous marine and brackish environments where they are hypothesized to play important ecological roles. Despite their potential significance, the study of freshwater AAPs is in its infancy and limited to local investigations. Here, we explore the occurrence, diversity and distribution of AAPs in lakes covering a wide latitudinal gradient: Mongolian and German lakes located in temperate regions of Eurasia, tropical Great East African lakes, and polar permanently ice-covered Antarctic lakes.

View Article and Find Full Text PDF

Subglacial microbial habitats are widespread in glaciated regions of our planet. Some of these environments have been isolated from the atmosphere and from sunlight for many thousands of years. Consequently, ecosystem processes must rely on energy gained from the oxidation of inorganic substrates or detrital organic matter.

View Article and Find Full Text PDF

Subglacial Lake Whillans (SLW) is located beneath ∼800 m of ice on the Whillans Ice Stream in West Antarctica and was sampled in January of 2013, providing the first opportunity to directly examine water and sediments from an Antarctic subglacial lake. To minimize the introduction of surface contaminants to SLW during its exploration, an access borehole was created using a microbiologically clean hot water drill designed to reduce the number and viability of microorganisms in the drilling water. Analysis of 16S rRNA genes (rDNA) amplified from samples of the drilling and borehole water allowed an evaluation of the efficacy of this approach and enabled a confident assessment of the SLW ecosystem inhabitants.

View Article and Find Full Text PDF

The McMurdo Dry Valleys constitute the largest ice free area of Antarctica. The area is a polar desert with an annual precipitation of ∼ 3 cm water equivalent, but contains several lakes fed by glacial melt water streams that flow from four to twelve weeks of the year. Over the past ∼20 years, data have been collected on the lakes located in Taylor Valley, Antarctica as part of the McMurdo Dry Valley Long-Term Ecological Research program (MCM-LTER).

View Article and Find Full Text PDF

Archaeal communities and the factors regulating their diversity in high altitude lakes are poorly understood. Here, we provide the first high-throughput sequencing study of Archaea from Tibetan Plateau lake sediments. We analyzed twenty lake sediments from the world's highest and largest plateau and found diverse archaeal assemblages that clustered into groups dominated by methanogenic Euryarchaeota, Crenarchaeota and Halobacteria/mixed euryarchaeal phylotypes.

View Article and Find Full Text PDF

After more than a decade of planning, three attempts were made in 2012-2013 to access, measure in situ properties and directly sample subglacial Antarctic lake environments. First, Russian scientists drilled into the top of Lake Vostok, allowing lake water to infiltrate, and freeze within, the lower part of the ice-core borehole, from which further coring would recover a frozen sample of surface lake water. Second, UK engineers tried unsuccessfully to deploy a clean-access hot-water drill, to sample the water column and sediments of subglacial Lake Ellsworth.

View Article and Find Full Text PDF