Background: Freshwater ecosystems are some of the most affected by biological invasions due, in part, to the introduction of invasive carp worldwide. Where carp have become established, management programs often seek to limit further range expansion into new areas by reducing their movement through interconnected rivers and waterways. Lock and dams are important locations for non-physical deterrents, such as carbon dioxide (CO), to reduce unwanted fish passage without disrupting human use.
View Article and Find Full Text PDFUnderstanding drivers of temporal variation in demographic parameters is a central goal of mark-recapture analysis. To estimate the survival of migrating animal populations in migration corridors, space-for-time mark-recapture models employ discrete sampling locations in space to monitor marked populations as they move past monitoring sites, rather than the standard practice of using fixed sampling points in time. Because these models focus on estimating survival over discrete spatial segments, model parameters are implicitly integrated over the temporal dimension.
View Article and Find Full Text PDFHigh water temperatures can increase the energetic cost for salmon to migrate and spawn, which can be important for Snake River fall-run Chinook salmon because they migrate great distances (>500 km) at a time when river temperatures (18-24°C) can be above their optimum temperatures (16.5°C). Average river temperatures and random combinations of migration and spawning dates were used to simulate fish travel times and determine the energetic consequences of different thermal experiences during migration.
View Article and Find Full Text PDFWe examined Lancefield serogroup B Streptococcus isolates recovered from diseased, cultured hybrid Striped Bass (Striped Bass Morone saxatilis × White Bass M. chrysops) and wild and cultured Gulf Killifish Fundulus grandis from coastal waters of the U.S.
View Article and Find Full Text PDFWe coupled dynamic optimization and bioenergetics models to assess the assumption that lake trout (Salvelinus namaycush) depth distribution is structured by temperature, food availability, and predation risk to maximize reproductive mass by autumn spawning. Because the model uses empirical daily thermal-depth profiles recorded in a small boreal shield lake (lake 373 at the Experimental Lakes Area, northwestern Ontario) during 2 years of contrasting thermal stratification patterns, we also assessed how climate-mediated changes in lakes may affect the vertical distribution, growth, and fitness of lake trout, a cold-water top predator. The depths of acoustic-tagged lake trout were recorded concurrently with thermal-depth profiles and were compared to model output, enabling an assessment of model performance in relation to the observed fish behavior and contrasting thermal conditions.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
November 2005
Global Positioning System (GPS) observations recorded in the United States and Europe were used to evaluate time transfer capabilities of GETT (geodetic time transfer). Timing estimates were compared with two-way satellite time and frequency transfer (TWSTFT) systems. A comparison of calibrated links at the U.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
November 2005
An absolute calibration technique is developed for geodetic Global Positioning System (GPS) receivers. An uncertainty budget for the system (receiver, cables, connectors, antenna) is evaluated, yielding 1.1 ns at each frequency, and 1.
View Article and Find Full Text PDF